Coercion into top-ordering datasets
Attempt to coerce the input data into a top-ordering dataset.
as.top_ordering(data, format_input = NULL, aggr = NULL, freq_col = NULL, ties_method = "random", ...)
data |
An object containing the partial sequences to be coerced into an object of class |
format_input |
Character string indicating the format of the |
aggr |
Logical: whether the |
freq_col |
Integer indicating the column of the |
ties_method |
Character string indicating the treatment of sequences with ties (not used for data of class |
... |
Further arguments passed to or from other methods (not used). |
The coercion function as.top_ordering
tries to coerce the input data into an object of class top_ordering
after checking for possible partial sequences that do not satisfy the top-ordering requirements. If none of the supplied sequences satisfies the top-ordering conditions, an error message is returned. NA
's in the input data
are tacitly converted into zero entries.
An object of S3 class c("top_ordering","matrix")
.
Cristina Mollica and Luca Tardella
Turner, H., Kormidis, I. and Firth, D. (2018). PlackettLuce: Plackett-Luce Models for Rankings. R package version 0.2-3. https://CRAN.R-project.org/package=PlackettLuce
Qian, Z. (2018). rankdist: Distance Based Ranking Models. R package version 1.1.3. https://CRAN.R-project.org/package=rankdist
## Coerce an object of class 'rankings' into an object of class 'top_ordering' library(PlackettLuce) RR <- matrix(c(1, 2, 0, 0, 4, 1, 2, 3, 2, 1, 1, 1, 1, 2, 3, 0, 2, 1, 1, 0, 1, 0, 3, 2), nrow = 6, byrow = TRUE) RR_rank=as.rankings(RR) RR_rank as.top_ordering(RR_rank, ties_method="random") ## Coerce an object of class 'RankData' into an object of class 'top_ordering' library(rankdist) data(apa_partial_obj) d_apa_top_ord=as.top_ordering(data=apa_partial_obj) identical(d_apa,d_apa_top_ord) ## Coerce a data frame from the package prefmod into an object of class 'top_ordering' library(prefmod) data(carconf) carconf_rank=carconf[,1:6] carconf_top_ord=as.top_ordering(data=carconf_rank,format_input="ranking",aggr=FALSE) identical(d_carconf,carconf_top_ord) ## Coerce a data frame from the package pmr into an object of class 'top_ordering' library(pmr) data(big4) head(big4) big4_top_ord=as.top_ordering(data=big4,format_input="ranking",aggr=TRUE,freq_col=5) head(big4_top_ord)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.