Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

johnsonTest

Testing against Ordered Alternatives (Johnson-Mehrotra Test)


Description

Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.

Usage

johnsonTest(x, ...)

## Default S3 method:
johnsonTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

## S3 method for class 'formula'
johnsonTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to "two.sided".

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, H_0: θ_1 = θ_2 = … = θ_k is tested against a simple order hypothesis, H_\mathrm{A}: θ_1 ≤ θ_2 ≤ … ≤ θ_k,~θ_1 < θ_k.

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

the estimated quantile of the test statistic.

p.value

the p-value for the test.

parameter

the parameters of the test statistic, if any.

alternative

a character string describing the alternative hypothesis.

estimates

the estimates, if any.

null.value

the estimate under the null hypothesis, if any.

References

Bortz, J. (1993). Statistik für Sozialwissenschaftler (4th ed.). Berlin: Springer.

Johnson, R. A., Mehrotra, K. G. (1972) Some c-sample nonparametric tests for ordered alternatives. Journal of the Indian Statistical Association 9, 8–23.

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)

PMCMRplus

Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended

v1.9.0
GPL (>= 3)
Authors
Thorsten Pohlert [aut, cre] (<https://orcid.org/0000-0003-3855-3025>)
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.