Testing against Ordered Alternatives (Johnson-Mehrotra Test)
Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.
johnsonTest(x, ...)
## Default S3 method:
johnsonTest(x, g, alternative = c("two.sided", "greater", "less"), ...)
## S3 method for class 'formula'
johnsonTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)| x | a numeric vector of data values, or a list of numeric data vectors. | 
| ... | further arguments to be passed to or from methods. | 
| g | a vector or factor object giving the group for the
corresponding elements of  | 
| alternative | the alternative hypothesis. Defaults to  | 
| formula | a formula of the form  | 
| data | an optional matrix or data frame (or similar: see
 | 
| subset | an optional vector specifying a subset of observations to be used. | 
| na.action | a function which indicates what should happen when
the data contain  | 
The null hypothesis, H_0: θ_1 = θ_2 = … = θ_k is tested against a simple order hypothesis, H_\mathrm{A}: θ_1 ≤ θ_2 ≤ … ≤ θ_k,~θ_1 < θ_k.
The p-values are estimated from the standard normal distribution.
A list with class "htest" containing the following components:
a character string indicating what type of test was performed.
a character string giving the name(s) of the data.
the estimated quantile of the test statistic.
the p-value for the test.
the parameters of the test statistic, if any.
a character string describing the alternative hypothesis.
the estimates, if any.
the estimate under the null hypothesis, if any.
Bortz, J. (1993). Statistik für Sozialwissenschaftler (4th ed.). Berlin: Springer.
Johnson, R. A., Mehrotra, K. G. (1972) Some c-sample nonparametric tests for ordered alternatives. Journal of the Indian Statistical Association 9, 8–23.
kruskalTest and shirleyWilliamsTest
of the package PMCMRplus,
kruskal.test of the library stats.
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")
## Chacko's test
chackoTest(x, g)
## Cuzick's test
cuzickTest(x, g)
## Johnson-Mehrotra test
johnsonTest(x, g)
## Jonckheere-Terpstra test
jonckheereTest(x, g)
## Le's test
leTest(x, g)
## Spearman type test
spearmanTest(x, g)
## Murakami's BWS trend test
bwsTrendTest(x, g)
## Fligner-Wolfe test
flignerWolfeTest(x, g)
## Shan-Young-Kang test
shanTest(x, g)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.