Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

kwManyOneConoverTest

Conover's Many-to-One Rank Comparison Test


Description

Performs Conover's non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

kwManyOneConoverTest(x, ...)

## Default S3 method:
kwManyOneConoverTest(
  x,
  g,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

## S3 method for class 'formula'
kwManyOneConoverTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to two.sided.

p.adjust.method

method for adjusting p values (see p.adjust).

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Conover's non-parametric test can be performed. Let there be k groups including the control, then the number of treatment levels is m = k - 1. Then m pairwise comparisons can be performed between the i-th treatment level and the control. H_i: θ_0 = θ_i is tested in the two-tailed case against A_i: θ_0 \ne θ_i, ~~ (1 ≤ i ≤ m).

If p.adjust.method == "single-step" is selected, the p-values will be computed from the multivariate t distribution. Otherwise, the p-values are computed from the t-distribution using any of the p-adjustment methods as included in p.adjust.

Value

A list with class "PMCMR" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value

lower-triangle matrix of the p-values for the pairwise tests.

alternative

a character string describing the alternative hypothesis.

p.adjust.method

a character string describing the method for p-value adjustment.

model

a data frame of the input data.

dist

a string that denotes the test distribution.

References

Conover, W. J, Iman, R. L. (1979) On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory.

See Also

Examples

## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "holm")
summary(ans)

## Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
                        p.adjust.method = "holm")
summary(ans)

PMCMRplus

Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended

v1.9.0
GPL (>= 3)
Authors
Thorsten Pohlert [aut, cre] (<https://orcid.org/0000-0003-3855-3025>)
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.