Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

kwManyOneDunnTest

Dunn's Many-to-One Rank Comparison Test


Description

Performs Dunn's non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

kwManyOneDunnTest(x, ...)

## Default S3 method:
kwManyOneDunnTest(
  x,
  g,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

## S3 method for class 'formula'
kwManyOneDunnTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to two.sided.

p.adjust.method

method for adjusting p values (see p.adjust).

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Dunn's non-parametric test can be performed. Let there be k groups including the control, then the number of treatment levels is m = k - 1. Then m pairwise comparisons can be performed between the i-th treatment level and the control. H_i: θ_0 = θ_i is tested in the two-tailed case against A_i: θ_0 \ne θ_i, ~~ (1 ≤ i ≤ m).

If p.adjust.method == "single-step" is selected, the p-values will be computed from the multivariate normal distribution. Otherwise, the p-values are computed from the standard normal distribution using any of the p-adjustment methods as included in p.adjust.

Value

A list with class "PMCMR" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value

lower-triangle matrix of the p-values for the pairwise tests.

alternative

a character string describing the alternative hypothesis.

p.adjust.method

a character string describing the method for p-value adjustment.

model

a data frame of the input data.

dist

a string that denotes the test distribution.

References

Dunn, O. J. (1964) Multiple comparisons using rank sums, Technometrics 6, 241–252.

Siegel, S., Castellan Jr., N. J. (1988) Nonparametric Statistics for The Behavioral Sciences. New York: McGraw-Hill.

See Also

Examples

## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
                             p.adjust.method = "holm")
summary(ans)

## Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
                        p.adjust.method = "holm")
summary(ans)

PMCMRplus

Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended

v1.9.0
GPL (>= 3)
Authors
Thorsten Pohlert [aut, cre] (<https://orcid.org/0000-0003-3855-3025>)
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.