Power Simulation for One-Factorial Single Hypothesis Tests
Performs power simulation for one-factorial single hypothesis tests.
powerOneWayTests( mu, n = 10, errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"), parms = list(mean = 0, sd = 1), test = c("kruskalTest", "leTest", "vanWaerdenTest", "normalScoresTest", "spearmanTest", "cuzickTest", "jonckheereTest", "johnsonTest", "oneway.test", "adKSampleTest", "bwsKSampleTest", "bwsTrendTest", "mackWolfeTest", "chackoTest", "flignerWolfeTest"), alternative = c("two.sided", "greater", "less"), var.equal = TRUE, dist = NULL, alpha = 0.05, FWER = TRUE, replicates = 1000, p = NULL )
mu |
numeric vector of group means. |
n |
number of replicates per group. If |
errfn |
the error function. Defaults to |
parms |
a list that denotes the arguments for the error function.
Defaults to |
test |
the test for which the power analysis is
to be performed. Defaults to |
alternative |
the alternative hypothesis. Defaults to |
var.equal |
a logical variable indicating whether to treat the variances
in the samples as equal. |
dist |
the test distribution. Only relevant for
|
alpha |
the nominal level of Type I Error. |
FWER |
logical, indicates whether the family-wise error should be computed.
Defaults to |
replicates |
the number of Monte Carlo replicates or runs. Defaults to |
p |
the a-priori known peak as an ordinal number of the treatment
group including the zero dose level, i.e. p = \{1, …, k\}.
Defaults to |
The linear model of a one-way ANOVA can be written as:
X_{ij} = μ_i + ε_{ij}
For each Monte Carlo run, the function simulates ε_{ij} based on the given error function and the corresponding parameters. Then the specified test is performed. Finally, Type I and Type II error rates are calculated.
An object with class powerOneWayPMCMR
.
## Not run: set.seed(12) mu <- c(0, 0, 1, 2) n <- c(5, 4, 5, 5) parms <- list(mean=0, sd=1) powerOneWayTests(mu, n, parms, test = "cuzickTest", alternative = "two.sided", replicates = 1E4) ## Compare power estimation for ## one-way ANOVA with balanced design ## as given by functions ## power.anova.test, pwr.anova.test ## and powerOneWayTest groupmeans <- c(120, 130, 140, 150) SEsq <- 500 # within-variance n <- 10 k <- length(groupmeans) df <- n * k - k SSQ.E <- SEsq * df SSQ.A <- n * var(groupmeans) * (k - 1) sd.errfn <- sqrt(SSQ.E / (n * k - 1)) R2 <- c("R-squared" = SSQ.A / (SSQ.A + SSQ.E)) cohensf <- sqrt(R2 / (1 - R2)) names(cohensf) <- "Cohens f" ## R stats power function power.anova.test(groups = k, between.var = var(groupmeans), within.var = SEsq, n = n) ## pwr power function pwr.anova.test(k = k, n = n, f = cohensf, sig.level=0.05) ## this Monte-Carlo based estimation set.seed(200) powerOneWayTests(mu = groupmeans, n = n, parms = list(mean=0, sd=sd.errfn), test = "oneway.test", var.equal = TRUE, replicates = 5E3) ## Compare with effect sizes R2 cohensf ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.