Ratio of Positive Definite Quadratic Forms Distribution
Density function, distribution function, quantile function and random generator for the ratio of positive definite QFs.
dQF_ratio(x, obj) pQF_ratio(q, obj) qQF_ratio(p, obj, eps_quant = 1e-06, maxit_quant = 10000) rQF_ratio( n, lambdas_num, lambdas_den, etas_num = rep(0, length(lambdas_num)), etas_den = rep(0, length(lambdas_den)) )
x, q |
vector of quantiles. |
obj |
|
p |
vector of probabilities. |
eps_quant |
relative error for quantiles. |
maxit_quant |
maximum number of Newton-Raphson iterations allowed to compute quantiles. |
n |
number of observations. |
lambdas_num |
vector of positive weights of the QF at the numerator. |
lambdas_den |
vector of positive weights of the QF at the denominator |
etas_num |
vector of non-centrality parameters of the QF at the numerator. Default all zeros. |
etas_den |
vector of non-centrality parameters of the QF at the denominator Default all zeros. |
The CDF and PDF of the ratio of positive QFs are evaluated by numerical inversion of the Mellin transform.
The absolute error specified in compute_MellinQF_ratio
is guaranteed for values of q
and x
inside range_q
.
If the quantile is outside range_q
, computations are carried out, but a warning is sent.
The function uses the Newton-Raphson algorithm to compute the ratio of QFs quantiles related to probabilities p
.
dQF_ratio
provides the values of the density function at a quantile x
.
pQF_ratio
provides the cumulative distribution function at a quantile q
.
qQF_ratio
provides the quantile corresponding to a probability level p
.
rQF_ratio
provides a sample of n
independent realizations the QFs ratio.
See compute_MellinQF_ratio
for details on the Mellin computation.
lambdas_QF_num <- c(rep(7, 6),rep(3, 2)) etas_QF_num <- c(rep(6, 6), rep(2, 2)) lambdas_QF_den <- c(0.6, 0.3, 0.1) # Computation Mellin transform eps <- 1e-7 rho <- 0.999 Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den, etas_QF_num, eps = eps, rho = rho) xs <- seq(Mellin_ratio$range_q[1], Mellin_ratio$range_q[2], l = 100) # PDF ds <- dQF_ratio(xs, Mellin_ratio) plot(xs, ds, type="l") # CDF ps <- pQF_ratio(xs, Mellin_ratio) plot(xs, ps, type="l") # Quantile qs <- qQF_ratio(ps, Mellin_ratio) plot(ps, qs, type="l") #Comparison computed quantiles vs real quantiles plot((qs - xs) / xs, type = "l")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.