Mellin Transform of the Independent Positive QFs Ratio
The function computes the Mellin transform of the ratio of independent and positive definite quadratic forms producing a MellinQF_ratio
object.
The output can be used to evaluate the density, cumulative and quantile functions of the target quadratic form.
compute_MellinQF_ratio( lambdas_num, lambdas_den, etas_num = rep(0, length(lambdas_num)), etas_den = rep(0, length(lambdas_den)), eps = 1e-06, rho = 1 - 1e-04, maxit_comp = 1e+05, eps_quant = 1e-06, maxit_quant = 10000, lambdas_tol = NULL )
lambdas_num |
vector of positive weights for the numerator. |
lambdas_den |
vector of positive weights for the denominator. |
etas_num |
vector of non-centrality parameters for the numerator. Default all zeros (central chi square). |
etas_den |
vector of non-centrality parameters for the denominator. Default all zeros (central chi square). |
eps |
required absolute error for density and cumulative functions. |
rho |
distribution total probability mass for which it is desired to keep the error |
maxit_comp |
maximum number of iterations. |
eps_quant |
required numerical error for quantile computation. |
maxit_quant |
maximum number of iterations before stopping the quantile computation. |
lambdas_tol |
maximum value admitted for the weight skewness for both the numerator and the denominator. When it is not NULL (default), elements of lambdas such that the ratio max(lambdas)/lambdas is greater than the specified value are removed. |
The Mellin transform of the ratio of two independent quadratic forms having positive weights lambdas_num
and lambdas_den
and non-centrality parameters etas_num
and etas_den
is computed
exploiting the density formulation by Ruben (1962). The numerical error is controlled in order to provide the requested precision (eps
) for the
interval of quantiles that contains the specified total probability rho
.
The argument eps_quant
controls the relative precision requested for the computation of quantiles that determine the range in which the error eps
is
guaranteed, whereas maxit_quant
sets the maximum number of Newton-Raphson iterations of the algorithm.
The function returns an object of the class MellinQF_ratio
that contains information on the Mellin transform
of the ratio of two linear combinations of positively weighted chi-square random variables. This information can be used in order to
evaluate the density, cumulative distribution and quantile functions of the desired quadratic form.
An object of the class MellinQF_ratio
has the following components:
range_q
: the range of quantiles that contains the specified mass of probability rho
in which it
is possible to compute density and CDF preserving the error level eps
.
Mellin
: a list containing the values of the Mellin transform (Mellin
),
the corresponding evaluation points (z
), the integration step delta
and the lowest numerator weight (lambda_min
).
the inputs rho
, lambdas_num
, lambdas_den
, etas_num
, etas_den
, eps
needed for CDF, PDF and quantile function computation.
Ruben, Harold. "Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables." The Annals of Mathematical Statistics 33.2 (1962): 542-570.
The function print.MellinQF_ratio
can be used to summarize the basic information on the Mellin transform.
library(QF) # Definition of the QFs lambdas_QF_num <- c(rep(7, 6),rep(3, 2)) etas_QF_num <- c(rep(6, 6), rep(2, 2)) lambdas_QF_den <- c(0.6, 0.3, 0.1) # Computation Mellin transform eps <- 1e-7 rho <- 0.999 Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den, etas_QF_num, eps = eps, rho = rho) print(Mellin_ratio)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.