Plot Slices of Bivariate Functions
This function plots slices from user defined values of bivariate surfaces.
sliceplot(x, y = NULL, z = NULL, view = 1, c.select = NULL, values = NULL, probs = c(0.1, 0.5, 0.9), grid = 100, legend = TRUE, pos = "topright", digits = 2, data = NULL, rawdata = FALSE, type = "akima", linear = FALSE, extrap = FALSE, k = 40, rug = TRUE, rug.col = NULL, jitter = TRUE, ...)
x |
a matrix or data frame, containing the covariates for which the effect should be plotted
in the first and second column and at least a third column containing the effect, typically
the structure for bivariate functions returned within |
y |
if |
z |
if |
view |
which variable should be used for the x-axis of the plot, the other variable will be
used to compute the slices. May also be a |
c.select |
|
values |
the values of the |
probs |
numeric vector of probabilities with values in [0,1] to be used within function
|
grid |
the grid size of the surface where the slices are generated from. |
legend |
if set to |
pos |
the position of the legend, see also function |
digits |
the decimal place the legend values should be rounded. |
data |
if |
rawdata |
if set to |
type |
character. Which type of interpolation metjod should be used. The default is
|
linear |
logical. Should linear interpolation be used withing function
|
extrap |
logical. Should interpolations be computed outside the observation area (i.e., extrapolated)? |
k |
integer. The number of basis functions to be used to compute the interpolated surface
when |
rug |
add a |
jitter |
|
rug.col |
specify the color of the rug representation. |
... |
Similar to function plot3d
, this function first applies bivariate interpolation
on a regular grid
, afterwards the slices are computed from the resulting surface.
Function sliceplot
uses per default the akima package to construct smooth interpolated
surfaces, therefore, package akima needs to be installed. The akima package has an ACM
license that restricts applications to non-commercial usage, see
Function sliceplot
prints a note refering to the ACM licence. This note can be supressed by
setting
options("use.akima" = TRUE)
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
## generate some data set.seed(111) n <- 500 ## regressors dat <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6)) ## response dat$y <- with(dat, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6)) ## Not run: ## estimate model b <- bayesx(y ~ sx(z, w, bs = "te", knots = 5), data = dat, method = "REML") summary(b) ## plot estimated effect plot(b, term = "sx(z,w)", sliceplot = TRUE) plot(b, term = "sx(z,w)", sliceplot = TRUE, view = 2) plot(b, term = "sx(z,w)", sliceplot = TRUE, view = "w") plot(b, term = "sx(z,w)", sliceplot = TRUE, c.select = 4) plot(b, term = "sx(z,w)", sliceplot = TRUE, c.select = 6) plot(b, term = "sx(z,w)", sliceplot = TRUE, probs = seq(0, 1, length = 10)) ## End(Not run) ## another variation dat$f1 <- with(dat, sin(z) * cos(w)) sliceplot(cbind(z = dat$z, w = dat$w, f1 = dat$f1)) ## same with formula sliceplot(sin(z) * cos(w) ~ z + w, ylab = "f(z)", data = dat) ## compare with plot3d() plot3d(sin(z) * 1.5 * w ~ z + w, zlab = "f(z,w)", data = dat) sliceplot(sin(z) * 1.5 * w ~ z + w, ylab = "f(z)", data = dat) sliceplot(sin(z) * 1.5 * w ~ z + w, view = 2, ylab = "f(z)", data = dat)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.