Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

predict.gMAP

Predictions from gMAP analyses


Description

Produces a sample of the predictive distribution.

Usage

## S3 method for class 'gMAP'
predict(object, newdata, type = c("response", "link"),
  probs = c(0.025, 0.5, 0.975), na.action = na.pass, thin, ...)

## S3 method for class 'gMAPpred'
print(x, digits = 3, ...)

## S3 method for class 'gMAPpred'
summary(object, ...)

## S3 method for class 'gMAPpred'
as.matrix(x, ...)

Arguments

newdata

data.frame which must contain the same columns as input into the gMAP analysis. If left out, then a posterior prediction for the fitted data entries from the gMAP object is performed (shrinkage estimates).

type

sets reported scale (response (default) or link).

probs

defines quantiles to be reported.

na.action

how to handle missings.

thin

thinning applied is derived from the gMAP object.

...

ignored.

x, object

gMAP analysis object for which predictions are performed

digits

number of displayed significant digits.

Details

Predictions are made using the τ prediction stratum of the gMAP object. For details on the syntax, please refer to predict.glm and the example below.

See Also

Examples

# create a fake data set with a covariate
trans_cov <- transform(transplant, country=cut(1:11, c(0,5,8,Inf), c("CH", "US", "DE")))
set.seed(34246)
map <- gMAP(cbind(r, n-r) ~ 1 + country | study,
            data=trans_cov,
            tau.dist="HalfNormal",
            tau.prior=1,
            # Note on priors: we make the overall intercept weakly-informative
            # and the regression coefficients must have tighter sd as these are
            # deviations in the default contrast parametrization
            beta.prior=rbind(c(0,2), c(0,1), c(0,1)),
            family=binomial,
            ## ensure fast example runtime
            thin=1, chains=1)

# posterior predictive distribution for each input data item (shrinkage estimates)
pred_cov <- predict(map)
pred_cov

# extract sample as matrix
samp <- as.matrix(pred_cov)

# predictive distribution for each input data item (if the input studies were new ones)
pred_cov_pred <- predict(map, trans_cov)
pred_cov_pred


# a summary function returns the results as matrix
summary(pred_cov)

# obtain a prediction for new data with specific covariates
pred_new <- predict(map, data.frame(country="CH", study=12))
pred_new

RBesT

R Bayesian Evidence Synthesis Tools

v1.6-1
GPL (>= 3)
Authors
Novartis Pharma AG [cph], Sebastian Weber [aut, cre], Beat Neuenschwander [ctb], Heinz Schmidli [ctb], Baldur Magnusson [ctb], Yue Li [ctb], Satrajit Roychoudhury [ctb], Trustees of Columbia University [cph] (R/stanmodels.R, configure, configure.win)
Initial release
2020-05-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.