Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

SnnsRObject-train

Train a network and test it in every training iteration


Description

SnnsR low-level function to train a network and test it in every training iteration.

Usage

## S4 method for signature 'SnnsR'
train(inputsTrain, targetsTrain=NULL, 
    initFunc="Randomize_Weights", initFuncParams=c(1.0, -1.0), 
    learnFunc="Std_Backpropagation", learnFuncParams=c(0.2, 0),
    updateFunc="Topological_Order", updateFuncParams=c(0.0), 
    outputMethod="reg_class", maxit=100, shufflePatterns=TRUE, 
    computeError=TRUE, inputsTest=NULL, targetsTest=NULL,
    pruneFunc=NULL, pruneFuncParams=NULL)

Arguments

inputsTrain

a matrix with inputs for the network

targetsTrain

the corresponding targets

initFunc

the initialization function to use

initFuncParams

the parameters for the initialization function

learnFunc

the learning function to use

learnFuncParams

the parameters for the learning function

updateFunc

the update function to use

updateFuncParams

the parameters for the update function

outputMethod

the output method of the net

maxit

maximum of iterations to learn

shufflePatterns

should the patterns be shuffled?

computeError

should the error be computed in every iteration?

inputsTest

a matrix with inputs to test the network

targetsTest

the corresponding targets for the test input

pruneFunc

the pruning function to use

pruneFuncParams

the parameters for the pruning function. Unlike the other functions, these have to be given in a named list. See the pruning demos for further explanation.

Value

a list containing:

fitValues

the fitted values, i.e. outputs of the training inputs

IterativeFitError

The SSE in every iteration/epoch on the training set

testValues

the predicted values, i.e. outputs of the test inputs

IterativeTestError

The SSE in every iteration/epoch on the test set


RSNNS

Neural Networks using the Stuttgart Neural Network Simulator (SNNS)

v0.4-12
LGPL (>= 2) | file LICENSE
Authors
Christoph Bergmeir [aut, cre, cph], José M. Benítez [ths], Andreas Zell [ctb] (Part of original SNNS development team), Niels Mache [ctb] (Part of original SNNS development team), Günter Mamier [ctb] (Part of original SNNS development team), Michael Vogt [ctb] (Part of original SNNS development team), Sven Döring [ctb] (Part of original SNNS development team), Ralf Hübner [ctb] (Part of original SNNS development team), Kai-Uwe Herrmann [ctb] (Part of original SNNS development team), Tobias Soyez [ctb] (Part of original SNNS development team), Michael Schmalzl [ctb] (Part of original SNNS development team), Tilman Sommer [ctb] (Part of original SNNS development team), Artemis Hatzigeorgiou [ctb] (Part of original SNNS development team), Dietmar Posselt [ctb] (Part of original SNNS development team), Tobias Schreiner [ctb] (Part of original SNNS development team), Bernward Kett [ctb] (Part of original SNNS development team), Martin Reczko [ctb] (Part of original SNNS external contributors), Martin Riedmiller [ctb] (Part of original SNNS external contributors), Mark Seemann [ctb] (Part of original SNNS external contributors), Marcus Ritt [ctb] (Part of original SNNS external contributors), Jamie DeCoster [ctb] (Part of original SNNS external contributors), Jochen Biedermann [ctb] (Part of original SNNS external contributors), Joachim Danz [ctb] (Part of original SNNS development team), Christian Wehrfritz [ctb] (Part of original SNNS development team), Patrick Kursawe [ctb] (Contributors to SNNS Version 4.3), Andre El-Ama [ctb] (Contributors to SNNS Version 4.3)
Initial release
2019-09-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.