Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

assoz

Create and train an (auto-)associative memory


Description

The autoassociative memory performs clustering by finding a prototype to the given input. The implementation assumes two-dimensional input and output (cf. art1).

Usage

assoz(x, ...)

## Default S3 method:
assoz(x, dimX, dimY, maxit = 100,
  initFunc = "RM_Random_Weights", initFuncParams = c(1, -1),
  learnFunc = "RM_delta", learnFuncParams = c(0.01, 100, 0, 0, 0),
  updateFunc = "Auto_Synchronous", updateFuncParams = c(50),
  shufflePatterns = TRUE, ...)

Arguments

x

a matrix with training inputs for the network

...

additional function parameters (currently not used)

dimX

x dimension of inputs and outputs

dimY

y dimension of inputs and outputs

maxit

maximum of iterations to learn

initFunc

the initialization function to use

initFuncParams

the parameters for the initialization function

learnFunc

the learning function to use

learnFuncParams

the parameters for the learning function

updateFunc

the update function to use

updateFuncParams

the parameters for the update function

shufflePatterns

should the patterns be shuffled?

Details

The default initialization and update functions are the only ones suitable for this kind of network. The update function takes one parameter, which is the number of iterations that will be performed. The default of 50 usually does not have to be modified. For learning, RM_delta and Hebbian functions can be used, though the first one usually performs better.

A more detailed description of the theory and the parameters is available from the SNNS documentation and the other referenced literature.

Value

an rsnns object. The fitted.values member contains the activation patterns for all inputs.

References

Palm, G. (1980), 'On associative memory', Biological Cybernetics 36, 19-31.

Rojas, R. (1996), Neural networks :a systematic introduction, Springer-Verlag, Berlin.

Zell, A. et al. (1998), 'SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2', IPVR, University of Stuttgart and WSI, University of Tübingen. http://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

See Also

Examples

## Not run: demo(assoz_letters)
## Not run: demo(assoz_lettersSnnsR)


data(snnsData)
patterns <- snnsData$art1_letters.pat

model <- assoz(patterns, dimX=7, dimY=5)

actMaps <- matrixToActMapList(model$fitted.values, nrow=7)

par(mfrow=c(3,3))
for (i in 1:9) plotActMap(actMaps[[i]])

RSNNS

Neural Networks using the Stuttgart Neural Network Simulator (SNNS)

v0.4-12
LGPL (>= 2) | file LICENSE
Authors
Christoph Bergmeir [aut, cre, cph], José M. Benítez [ths], Andreas Zell [ctb] (Part of original SNNS development team), Niels Mache [ctb] (Part of original SNNS development team), Günter Mamier [ctb] (Part of original SNNS development team), Michael Vogt [ctb] (Part of original SNNS development team), Sven Döring [ctb] (Part of original SNNS development team), Ralf Hübner [ctb] (Part of original SNNS development team), Kai-Uwe Herrmann [ctb] (Part of original SNNS development team), Tobias Soyez [ctb] (Part of original SNNS development team), Michael Schmalzl [ctb] (Part of original SNNS development team), Tilman Sommer [ctb] (Part of original SNNS development team), Artemis Hatzigeorgiou [ctb] (Part of original SNNS development team), Dietmar Posselt [ctb] (Part of original SNNS development team), Tobias Schreiner [ctb] (Part of original SNNS development team), Bernward Kett [ctb] (Part of original SNNS development team), Martin Reczko [ctb] (Part of original SNNS external contributors), Martin Riedmiller [ctb] (Part of original SNNS external contributors), Mark Seemann [ctb] (Part of original SNNS external contributors), Marcus Ritt [ctb] (Part of original SNNS external contributors), Jamie DeCoster [ctb] (Part of original SNNS external contributors), Jochen Biedermann [ctb] (Part of original SNNS external contributors), Joachim Danz [ctb] (Part of original SNNS development team), Christian Wehrfritz [ctb] (Part of original SNNS development team), Patrick Kursawe [ctb] (Contributors to SNNS Version 4.3), Andre El-Ama [ctb] (Contributors to SNNS Version 4.3)
Initial release
2019-09-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.