Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rsnnsObjectFactory

Object factory for generating rsnns objects


Description

The object factory generates an rsnns object and initializes its member variables with the values given as parameters. Furthermore, it generates an object of SnnsR-class. Later, this information is to be used to train the network.

Usage

rsnnsObjectFactory(subclass, nInputs, maxit, initFunc, initFuncParams,
  learnFunc, learnFuncParams, updateFunc, updateFuncParams,
  shufflePatterns = TRUE, computeIterativeError = TRUE,
  pruneFunc = NULL, pruneFuncParams = NULL)

Arguments

subclass

the subclass of rsnns to generate (vector of strings)

nInputs

the number of inputs the network will have

maxit

maximum of iterations to learn

initFunc

the initialization function to use

initFuncParams

the parameters for the initialization function

learnFunc

the learning function to use

learnFuncParams

the parameters for the learning function

updateFunc

the update function to use

updateFuncParams

the parameters for the update function

shufflePatterns

should the patterns be shuffled?

computeIterativeError

should the error be computed in every iteration?

pruneFunc

the pruning function to use

pruneFuncParams

the parameters for the pruning function. Unlike the other functions, these have to be given in a named list. See the pruning demos for further explanation.

Details

The typical procedure implemented in rsnns subclasses is the following:

  • generate the rsnns object with this object factory

  • generate the network according to the architecture needed

  • train the network (with train)

In every rsnns object, the iterative error is the summed squared error (SSE) of all patterns. If the SSE is computed on the test set, then it is weighted to take care of the different amount of patterns in the sets.

Value

a partly initialized rsnns object

See Also


RSNNS

Neural Networks using the Stuttgart Neural Network Simulator (SNNS)

v0.4-12
LGPL (>= 2) | file LICENSE
Authors
Christoph Bergmeir [aut, cre, cph], José M. Benítez [ths], Andreas Zell [ctb] (Part of original SNNS development team), Niels Mache [ctb] (Part of original SNNS development team), Günter Mamier [ctb] (Part of original SNNS development team), Michael Vogt [ctb] (Part of original SNNS development team), Sven Döring [ctb] (Part of original SNNS development team), Ralf Hübner [ctb] (Part of original SNNS development team), Kai-Uwe Herrmann [ctb] (Part of original SNNS development team), Tobias Soyez [ctb] (Part of original SNNS development team), Michael Schmalzl [ctb] (Part of original SNNS development team), Tilman Sommer [ctb] (Part of original SNNS development team), Artemis Hatzigeorgiou [ctb] (Part of original SNNS development team), Dietmar Posselt [ctb] (Part of original SNNS development team), Tobias Schreiner [ctb] (Part of original SNNS development team), Bernward Kett [ctb] (Part of original SNNS development team), Martin Reczko [ctb] (Part of original SNNS external contributors), Martin Riedmiller [ctb] (Part of original SNNS external contributors), Mark Seemann [ctb] (Part of original SNNS external contributors), Marcus Ritt [ctb] (Part of original SNNS external contributors), Jamie DeCoster [ctb] (Part of original SNNS external contributors), Jochen Biedermann [ctb] (Part of original SNNS external contributors), Joachim Danz [ctb] (Part of original SNNS development team), Christian Wehrfritz [ctb] (Part of original SNNS development team), Patrick Kursawe [ctb] (Contributors to SNNS Version 4.3), Andre El-Ama [ctb] (Contributors to SNNS Version 4.3)
Initial release
2019-09-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.