Optimisers for fitting model parameters to spatial data
See RFfit for a detailed description of
the fitting procedure.
optimiser takes one of the values
"optim", "optimx", "soma", "nloptr",
"GenSA", "minqa", "pso" or "DEoptim",
see the corresponding packages for a description.
If optimiser="nloptr", then the additional parameter
algorithm must be given which takes the values
"NLOPT_GN_DIRECT",
"NLOPT_GN_DIRECT_L",
"NLOPT_GN_DIRECT_L_RAND",
"NLOPT_GN_DIRECT_NOSCAL",
"NLOPT_GN_DIRECT_L_NOSCAL",
"NLOPT_GN_DIRECT_L_RAND_NOSCAL",
"NLOPT_GN_ORIG_DIRECT",
"NLOPT_GN_ORIG_DIRECT_L",
"NLOPT_LN_PRAXIS",
"NLOPT_GN_CRS2_LM",
"NLOPT_LN_COBYLA",
"NLOPT_LN_NELDERMEAD",
"NLOPT_LN_SBPLX",
"NLOPT_LN_BOBYQA",
"NLOPT_GN_ISRES",
see nloptr for a description.
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## Not run:
## Here some alternative optimisers to 'optim' are considered.
## All but the \pkg{nloptr} algorithms are largely slower than 'optim'.
## Only a few of them return results as good as 'optim'.
data(soil)
str(soil)
soil <- RFspatialPointsDataFrame(
coords = soil[ , c("x.coord", "y.coord")],
data = soil[ , c("moisture", "NO3.N", "Total.N", "NH4.N", "DOC", "N20N")],
RFparams=list(vdim=6, n=1)
)
dta <- soil["moisture"]
\dontshow{if (RFoptions()$internal$examples_red) {
warning("data have been reduced !")
All <- 1:7
rm(soil)
data(soil)
soil <- RFspatialPointsDataFrame(
coords = soil[All, c("x.coord", "y.coord")],
data = soil[All, c("moisture", "NO3.N", "Total.N",
"NH4.N", "DOC", "N20N")],
RFparams=list(vdim=6, n=1)
)
dta <- soil["moisture"]
}}
model <- ~1 + RMwhittle(scale=NA, var=NA, nu=NA) + RMnugget(var=NA)
\dontshow{if (RFoptions()$internal$examples_red){model<-~1+RMwhittle(scale=NA,var=NA,nu=1/2)}}
## standard optimiser 'optim'
print(system.time(fit <- RFfit(model, data=dta)))
print(fit)
opt <- "optimx" # 30 sec; better result
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt))))
print(fit2)
\dontshow{\dontrun{
opt <- "soma" # 450 sec
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt))))
print(fit2)
}}
opt <- "minqa" # 330 sec
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt))))
print(fit2)
opt <- "nloptr"
algorithm <- RC_NLOPTR_NAMES
\dontshow{if(!interactive()) algorithm <- RC_NLOPTR_NAMES[1]}
for (i in 1:length(algorithm)) {
print(algorithm[i])
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt,
algorithm=algorithm[i]))))
print(fit2)
}
if (interactive()) {
## the following two optimisers are too slow to be run on CRAN.
opt <- "pso" # 600 sec
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt))))
print(fit2)
opt <- "GenSA" # 10^4 sec
print(system.time(fit2 <- try(RFfit(model, data=dta, optimiser=opt))))
print(fit2)
}
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.