EPD estimator
Fit the Extended Pareto Distribution (GPD) to the exceedances (peaks) over a threshold. Optionally, these estimates are plotted as a function of k.
EPD(data, rho = -1, start = NULL, direct = FALSE, warnings = FALSE, logk = FALSE, plot = FALSE, add = FALSE, main = "EPD estimates of the EVI", ...)
data |
Vector of n observations. |
rho |
A parameter for the ρ-estimator of Fraga Alves et al. (2003)
when strictly positive or choice(s) for ρ if negative. Default is |
start |
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of γ and the second element is the starting value for the estimator of κ. This argument is only used when |
direct |
Logical indicating if the parameters are obtained by directly maximising the log-likelihood function, see Details. Default is |
warnings |
Logical indicating if possible warnings from the optimisation function are shown, default is |
logk |
Logical indicating if the estimates are plotted as a function of \log(k) ( |
plot |
Logical indicating if the estimates of γ should be plotted as a function of k, default is |
add |
Logical indicating if the estimates of γ should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
We fit the Extended Pareto distribution to the relative excesses over a threshold (X/u). The EPD has distribution function F(x) = 1-(x(1+κ-κ x^{τ}))^{-1/γ} with τ = ρ/γ <0<γ and κ>\max(-1,1/τ).
The parameters are determined using MLE and there are two possible approaches:
maximise the log-likelihood directly (direct=TRUE
) or follow the approach detailed in
Beirlant et al. (2009) (direct=FALSE
). The latter approach uses the score functions of the log-likelihood.
See Section 4.2.1 of Albrecher et al. (2017) for more details.
A list with following components:
k |
Vector of the values of the tail parameter k. |
gamma |
Vector of the corresponding estimates for the γ parameter of the EPD. |
kappa |
Vector of the corresponding MLE estimates for the κ parameter of the EPD. |
tau |
Vector of the corresponding estimates for the τ parameter of the EPD using Hill estimates and values for ρ. |
Tom Reynkens
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800–2815.
Fraga Alves, M.I. , Gomes, M.I. and de Haan, L. (2003). "A New Class of Semi-parametric Estimators of the Second Order Parameter." Portugaliae Mathematica, 60, 193–214.
data(secura) # EPD estimates for the EVI epd <- EPD(secura$size, plot=TRUE) # Compute return periods ReturnEPD(secura$size, 10^10, gamma=epd$gamma, kappa=epd$kappa, tau=epd$tau, plot=TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.