Estimator of small exceedance probabilities and large return periods using MOM
Computes estimates of a small exceedance probability P(X>q) or large return period 1/P(X>q) using the Method of Moments estimates for the EVI.
ProbMOM(data, gamma, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) ReturnMOM(data, gamma, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...)
data |
Vector of n observations. |
gamma |
Vector of n-1 estimates for the EVI obtained from |
q |
The used large quantile (we estimate P(X>q) or 1/P(X>q) for q large). |
plot |
Logical indicating if the estimates should be plotted as a function of k, default is |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
See Section 4.2.2 of Albrecher et al. (2017) for more details.
A list with following components:
k |
Vector of the values of the tail parameter k. |
P |
Vector of the corresponding probability estimates, only returned for |
R |
Vector of the corresponding estimates for the return period, only returned for |
q |
The used large quantile. |
Tom Reynkens.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Dekkers, A.L.M, Einmahl, J.H.J. and de Haan, L. (1989). "A Moment Estimator for the Index of an Extreme-value Distribution." Annals of Statistics, 17, 1833–1855.
data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # MOM estimator M <- Moment(SOAdata) # Exceedance probability q <- 10^7 ProbMOM(SOAdata, gamma=M$gamma, q=q, plot=TRUE) # Return period q <- 10^7 ReturnMOM(SOAdata, gamma=M$gamma, q=q, plot=TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.