Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ScaleReg

Scale estimator in regression


Description

Estimator of the scale parameter in the regression case where γ is constant and the regression modelling is thus placed solely on the scale parameter.

Usage

ScaleReg(s, Z, kernel = c("normal", "uniform", "triangular", "epanechnikov", "biweight"), 
         h, plot = TRUE, add = FALSE, main = "Estimates of scale parameter", ...)

Arguments

s

Point to evaluate the scale estimator in.

Z

Vector of n observations (from the response variable).

kernel

The kernel used in the estimator. One of "normal" (default), "uniform", "triangular", "epanechnikov" and "biweight".

h

The bandwidth used in the kernel function.

plot

Logical indicating if the estimates should be plotted as a function of k, default is FALSE.

add

Logical indicating if the estimates should be added to an existing plot, default is FALSE.

main

Title for the plot, default is "Estimates of scale parameter".

...

Additional arguments for the plot function, see plot for more details.

Details

The scale estimator is computed as

\hat{A}(s) = 1/(k+1) ∑_{i=1}^n 1_{Z_i>Z_{n-k,n}} K_h(s-i/n)

with K_h(x)=K(x/h)/h, K the kernel function and h the bandwidth. Here, it is assumed that we have equidistant covariates x_i=i/n.

See Section 4.4.1 in Albrecher et al. (2017) for more details.

Value

A list with following components:

k

Vector of the values of the tail parameter k.

A

Vector of the corresponding scale estimates.

Author(s)

Tom Reynkens

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

See Also

Examples

data(norwegianfire)

Z <- norwegianfire$size[norwegianfire$year==76]

i <- 100
n <- length(Z)

# Scale estimator in i/n
A <- ScaleReg(i/n, Z, h=0.5, kernel = "epanechnikov")$A

# Small exceedance probability
q <- 10^6
ProbReg(Z, A, q, plot=TRUE)

# Large quantile
p <- 10^(-5)
QuantReg(Z, A, p, plot=TRUE)

ReIns

Functions from "Reinsurance: Actuarial and Statistical Aspects"

v1.0.10
GPL (>= 2)
Authors
Tom Reynkens [aut, cre] (<https://orcid.org/0000-0002-5516-5107>), Roel Verbelen [aut] (R code for Mixed Erlang distribution, <https://orcid.org/0000-0002-2347-9240>), Anastasios Bardoutsos [ctb] (Original R code for cEPD estimator), Dries Cornilly [ctb] (Original R code for EVT estimators for truncated data), Yuri Goegebeur [ctb] (Original S-Plus code for basic EVT estimators), Klaus Herrmann [ctb] (Original R code for GPD estimator)
Initial release
2020-05-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.