Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

stdf

Non-parametric estimators of the STDF


Description

Non-parametric estimators of the stable tail dependence function (STDF): \hat{l}_k(x) and \tilde{l}_k(x).

Usage

stdf(x, k, X, alpha = 0.5)

stdf2(x, k, X)

Arguments

x

A d-dimensional point to estimate the STDF in.

k

Value of the tail index k.

X

A data matrix of dimensions n by d with observations in the rows.

alpha

The parameter α of the estimator \hat{l}_k(x) (stdf), default is 0.5. This argument is not used in stdf2.

Details

The stable tail dependence function in x can be estimated by

\hat{l}_k(x) = 1/k ∑_{i=1}^n 1_{\{\exists j\in\{1,…, d\}: \hat{F}_j(X_{i,j})>1-k/n x_j\}}

with

\hat{F}_j(X_{i,j})=(R_{i,j}-α)/n

where R_{i,j} is the rank of X_{i,j} among the n observations in the j-th dimension:

R_{i,j}=∑_{m=1}^n 1_{\{X_{m,j}≤ X_{i,j}\}}.

This estimator is implemented in stdf.

The second estimator is given by

\tilde{l}_k(x) = 1/k ∑_{i=1}^n 1_{\{X_{i,1}≥ X^{(1)}_{n-[kx_1]+1,n} or … or X_{i,d}≥ X^{(d)}_{n-[kx_d]+1,n}\}}

where X_{i,n}^{(j)} is the i-th smallest observation in the j-th dimension. This estimator is implemented in stdf2.

See Section 4.5 of Beirlant et al. (2016) for more details.

Value

stdf returns the estimate \hat{l}_k(x) and stdf2 returns the estimate \tilde{l}_k(x).

Author(s)

Tom Reynkens

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Examples

# Generate data matrix
X <- cbind(rpareto(100,2), rpareto(100,3))

# Tail index
k <- 20

# Point to evaluate the STDF in
x <- c(2,3)

# First estimate
stdf(x, k, X)

# Second estimate
stdf2(x, k, X)

ReIns

Functions from "Reinsurance: Actuarial and Statistical Aspects"

v1.0.10
GPL (>= 2)
Authors
Tom Reynkens [aut, cre] (<https://orcid.org/0000-0002-5516-5107>), Roel Verbelen [aut] (R code for Mixed Erlang distribution, <https://orcid.org/0000-0002-2347-9240>), Anastasios Bardoutsos [ctb] (Original R code for cEPD estimator), Dries Cornilly [ctb] (Original R code for EVT estimators for truncated data), Yuri Goegebeur [ctb] (Original S-Plus code for basic EVT estimators), Klaus Herrmann [ctb] (Original R code for GPD estimator)
Initial release
2020-05-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.