Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

collognorm.mle

Column-wise MLE of some univariate distributions


Description

Column-wise MLE of some univariate distributions.

Usage

collognorm.mle(x)
collogitnorm.mle(x)
colborel.mle(x)
colhalfnorm.mle(x)
colordinal.mle(x, link = "logit")
colcauchy.mle(x, tol = 1e-07, maxiters = 100, parallel = FALSE)
colbeta.mle(x, tol = 1e-07, maxiters = 100, parallel = FALSE)
colunitweibull.mle(x, tol = 1e-07, maxiters = 100, parallel = FALSE)

Arguments

x

A numerical matrix with data. Each column refers to a different vector of observations of the same distribution. The values of for Lognormal must be greater than zero, for the logitnormal they must by percentages, exluding 0 and 1, whereas for the Borel distribution the x must contain integer values greater than 1. For the halfnormal the numbers must be strictly positive, while for the ordinal this can be a numerical matrix with values 1, 2, 3,..., not zeros.

link

This can either be "logit" or "probit". It is the link function to be used.

tol

The tolerance value to terminate the Newton-Fisher algorithm.

maxiters

The maximum number of iterations to implement.

parallel

Do you want to calculations to take place in parallel? The default value is FALSE

Details

For each column, the same distribution is fitted and its parameters and log-likelihood are computed.

Value

A matrix with two or three columns. The first one or the first two contain the parameter(s) of the distribution and the second or third column the relevant log-likelihood. For the ordinal a list including:

param

A matrix with the intercepts (threshold coefficients) of the model applied to each column (or variable).

loglik

The log-likelihood values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Stefanos Fafalios stefanosfafalios@gmail.com.

References

N.L. Johnson, S. Kotz \& N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).

N.L. Johnson, S. Kotz \& N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2.

Agresti, A. (2002) Categorical Data. Second edition. Wiley.

J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira & M. E. Ghitany (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, DOI:10.1080/02664763.2019.1657813

See Also

Examples

x <- matrix( exp( rnorm(1000 * 50) ), ncol = 50)
a <- collognorm.mle(x)
x <- NULL

Rfast2

A Collection of Efficient and Extremely Fast R Functions II

v0.0.9
GPL (>= 2.0)
Authors
Manos Papadakis, Michail Tsagris, Stefanos Fafalios and Marios Dimitriadis.
Initial release
2021-03-21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.