Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

kumar.mle

MLE of distributions defined for proportions


Description

MLE of distributions defined for proportions.

Usage

kumar.mle(x, tol = 1e-07, maxiters = 50)
simplex.mle(x, tol = 1e-07)
zil.mle(x)
unitweibull.mle(x, tol = 1e-07, maxiters = 100)

Arguments

x

A vector with proportions or percentages. Zeros are allowed only for the zero inflated logistirc normal distribution (zil.mle).

tol

The tolerance level up to which the maximisation stops; set to 1e-07 by default.

maxiters

The maximum number of iterations the Newton-Raphson will perform.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equations to be solved. The distributions are Kumaraswamy, zero inflated logistic normal and simplex.

Value

Usually a list with three elements, but this is not for all cases.

iters

The number of iterations required for the Newton-Raphson to converge.

param

The two parameters (shape and scale) of the Kumaraswamy distribution or the means and sigma of the simpled distribution. For the zero inflated logistic normal, the probability of non zeros, the mean and the unbiased variance.

loglik

The value of the maximised log-likelihood.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kumaraswamy P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology 46(1-2): 79-88.

Jones M.C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1): 70-81.

Zhang, W. & Wei, H. (2008). Maximum likelihood estimation for simplex distribution nonlinear mixed models via the stochastic approximation algorithm. The Rocky Mountain Journal of Mathematics, 38(5): 1863-1875.

J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira & M. E. Ghitany (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, DOI:10.1080/02664763.2019.1657813

You can also check the relevant wikipedia pages.

See Also

Examples

u <- runif(1000)
a <- 0.4  ;  b <- 1
x <- ( 1 - (1 - u)^(1/b) )^(1/a)
kumar.mle(x)

Rfast2

A Collection of Efficient and Extremely Fast R Functions II

v0.0.9
GPL (>= 2.0)
Authors
Manos Papadakis, Michail Tsagris, Stefanos Fafalios and Marios Dimitriadis.
Initial release
2021-03-21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.