Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

reg.mle.lda

Regularised maximum likelihood linear discriminant analysis


Description

Regularised maximum likelihood linear discriminant analysis.

Usage

reg.mle.lda(xnew, x, ina, lambda)

Arguments

xnew

A numerical vector or a matrix with the new observations, continuous data.

x

A matrix with numerical data.

ina

A numerical vector or factor with consecutive numbers indicating the group to which each observation belongs to.

lambda

A vector of regularization values λ such as (0, 0.1, 0.2,...).

Details

Regularised maximum likelihood linear discriminant analysis is performed. The function is not extremely fast, yet is pretty fast.

Value

A matrix with the predicted group of each observation in "xnew". Every column corresponds to a λ value. If you have just on value of λ, then you will have one column only.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

Examples

x <- as.matrix(iris[, 1:4])
ina <- iris[, 5]
a <- reg.mle.lda(x, x, ina, lambda = seq(0, 1, by = 0.1) )

Rfast2

A Collection of Efficient and Extremely Fast R Functions II

v0.0.9
GPL (>= 2.0)
Authors
Manos Papadakis, Michail Tsagris, Stefanos Fafalios and Marios Dimitriadis.
Initial release
2021-03-21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.