Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

0RobLox-package

Optimally robust influence curves and estimators for location and scale


Description

Functions for the determination of optimally robust influence curves and estimators in case of normal location and/or scale.

Details

Package: RobLox
Version: 1.2.0
Date: 2019-04-02
Depends: R(>= 3.4), stats, distrMod(>= 2.8.0), RobAStBase(>= 1.2.0)
Imports: methods, lattice, RColorBrewer, Biobase, RandVar(>= 1.2.0), distr(>= 2.8.0)
Suggests: MASS
ByteCompile: yes
License: LGPL-3
URL: http://robast.r-forge.r-project.org/
VCS/SVNRevision: 1214

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating "depends" information.

Author(s)

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer. Rieder, H., Kohl, M. and Ruckdeschel, P. (2008). The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.

See Also

Examples

library(RobLox)
ind <- rbinom(100, size=1, prob=0.05) 
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
roblox(x)
res <- roblox(x, eps.lower = 0.01, eps.upper = 0.1, returnIC = TRUE)
estimate(res)
confint(res)
confint(res, method = symmetricBias())
pIC(res)
## don't run to reduce check time on CRAN
## Not run: 
checkIC(pIC(res))
Risks(pIC(res))
Infos(pIC(res))
plot(pIC(res))
infoPlot(pIC(res))

## End(Not run)
## row-wise application
ind <- rbinom(200, size=1, prob=0.05) 
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
rowRoblox(X)

RobLox

Optimally Robust Influence Curves and Estimators for Location and Scale

v1.2.0
LGPL-3
Authors
Matthias Kohl [cre, cph], Peter Ruckdeschel [aut, cph]
Initial release
2019-04-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.