Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

KurtSDNew

Robust multivariate location and scatter estimators


Description

This function computes robust multivariate location and scatter estimators using both random and deterministic starting points.

Usage

initPP(X, muldirand = 20, muldifix = 10, dirmin = 1000)

Arguments

X

a data matrix with observations in rows.

muldirand

used to determine the number of random directions (candidates), which is max(p*muldirand, dirmin), where p is the number of columns in X.

muldifix

used to determine the number of random directions (candidates), which is min(n, 2*muldifix*p).

dirmin

minimum number of random directions

Details

This function computes robust multivariate location and scatter using both Pen~a-Prieto and random candidates.

Value

A list with the following components:

idx

A zero/one vector with ones in the positions of the suspected outliers

disma

Robust squared Mahalanobis distances

center

Robust mean estimate

cova

Robust covariance matrix estimate

t

Outlyingness of data points

Author(s)

Ricardo Maronna, rmaronna@retina.ar, based on original code by D. Pen~a and J. Prieto

References

Examples

data(bus)
X0 <- as.matrix(bus)
X1 <- X0[,-9]
tmp <- initPP(X1)
round(tmp$cov[1:10, 1:10], 3)
tmp$center

RobStatTM

Robust Statistics: Theory and Methods

v1.0.2
GPL (>= 3)
Authors
Matias Salibian-Barrera [cre], Victor Yohai [aut], Ricardo Maronna [aut], Doug Martin [aut], Gregory Brownson [aut] (ShinyUI), Kjell Konis [aut], Kjell Konis [cph] (erfi), Christophe Croux [ctb] (WBYlogreg, BYlogreg), Gentiane Haesbroeck [ctb] (WBYlogreg, BYlogreg), Martin Maechler [cph] (lmrob.fit, lmrob..M..fit, lmrob.S), Manuel Koller [cph] (lmrob.fit, .vcov.avar1, lmrob.S, lmrob.lar), Matias Salibian-Barrera [aut]
Initial release
2020-03-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.