Robust Principal Components Cont'd
This function uses the pcaRobS function to compute all principal components while behaving similarly to the prcomp function
prcompRob(x, rank. = NULL, delta.scale = 0.5, max.iter = 100L)
x |
data matrix with observations in rows |
rank. |
Maximal number of principal components to be used (optional) |
delta.scale |
"delta" parametor of the scale M-estimator (default = 0.5) |
max.iter |
maximum number of iterations (default = 100) |
sdev |
the standard deviation of the principal components |
rotation |
matrix containing the factor loadings |
x |
matrix containing the rotated data |
center |
the centering used |
Gregory Brownson, gregory.brownson@gmail.com
data(wine) p.wine <- prcompRob(wine) summary(p.wine) ## Choose only 5 p5.wine <- prcompRob(wine, rank. = 5) summary(p5.wine)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.