Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

prcompRob

Robust Principal Components Cont'd


Description

This function uses the pcaRobS function to compute all principal components while behaving similarly to the prcomp function

Usage

prcompRob(x, rank. = NULL, delta.scale = 0.5, max.iter = 100L)

Arguments

x

data matrix with observations in rows

rank.

Maximal number of principal components to be used (optional)

delta.scale

"delta" parametor of the scale M-estimator (default = 0.5)

max.iter

maximum number of iterations (default = 100)

Value

sdev

the standard deviation of the principal components

rotation

matrix containing the factor loadings

x

matrix containing the rotated data

center

the centering used

Author(s)

Gregory Brownson, gregory.brownson@gmail.com

Examples

data(wine)

p.wine <- prcompRob(wine)
summary(p.wine)

## Choose only 5
p5.wine <- prcompRob(wine, rank. = 5)
summary(p5.wine)

RobStatTM

Robust Statistics: Theory and Methods

v1.0.2
GPL (>= 3)
Authors
Matias Salibian-Barrera [cre], Victor Yohai [aut], Ricardo Maronna [aut], Doug Martin [aut], Gregory Brownson [aut] (ShinyUI), Kjell Konis [aut], Kjell Konis [cph] (erfi), Christophe Croux [ctb] (WBYlogreg, BYlogreg), Gentiane Haesbroeck [ctb] (WBYlogreg, BYlogreg), Martin Maechler [cph] (lmrob.fit, lmrob..M..fit, lmrob.S), Manuel Koller [cph] (lmrob.fit, .vcov.avar1, lmrob.S, lmrob.lar), Matias Salibian-Barrera [aut]
Initial release
2020-03-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.