Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rho

Rho functions


Description

This function returns the value of the "rho" loss function used to compute either an M-scale estimator or a robust regression estimator. It currently can be used to compute the bisquare, optimal and modified optimal loss functions.

Usage

rho(u, family = " bisquare", cc, standardize = TRUE)

Arguments

u

point or vector at which rho is to be evaluated

family

family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").

cc

tuning parameters to be computed according to efficiency and / or breakdown considerations. See lmrobdet.control, bisquare, mopt and opt.

standardize

logical value determining whether the rho function is to be standardized so that its maximum value is 1. See Mpsi.

Value

The value(s) of rho at u

Author(s)

Matias Salibian-Barrera, matias@stat.ubc.ca

Examples

# Evaluate rho tuned for 85% efficiency
rho(u=1.1, family='bisquare', cc=bisquare(.85))
# Evaluate rho tuned for 50% breakdown
rho(u=1.1, family='opt', cc=lmrobdet.control(bb=.5, family='opt')$tuning.chi)

RobStatTM

Robust Statistics: Theory and Methods

v1.0.2
GPL (>= 3)
Authors
Matias Salibian-Barrera [cre], Victor Yohai [aut], Ricardo Maronna [aut], Doug Martin [aut], Gregory Brownson [aut] (ShinyUI), Kjell Konis [aut], Kjell Konis [cph] (erfi), Christophe Croux [ctb] (WBYlogreg, BYlogreg), Gentiane Haesbroeck [ctb] (WBYlogreg, BYlogreg), Martin Maechler [cph] (lmrob.fit, lmrob..M..fit, lmrob.S), Manuel Koller [cph] (lmrob.fit, .vcov.avar1, lmrob.S, lmrob.lar), Matias Salibian-Barrera [aut]
Initial release
2020-03-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.