General Interface for LinearTSVM model
model from RSSL package
Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM
or the Primal formulation.
LinearTSVMSSLR( C = 1, Cstar = 0.1, s = 0, x_center = FALSE, scale = FALSE, eps = 1e-06, verbose = FALSE, init = NULL )
C |
Cost variable |
Cstar |
numeric; Cost parameter of the unlabeled objects |
s |
numeric; parameter controlling the loss function of the unlabeled objects |
x_center |
logical; Should the features be centered? |
scale |
Whether a z-transform should be applied (default: TRUE) |
eps |
Small value to ensure positive definiteness of the matrix in QP formulation |
verbose |
logical; Controls the verbosity of the output |
init |
numeric; Initial classifier parameters to start the convex concave procedure |
library(tidyverse) library(caret) library(tidymodels) library(SSLR) data(breast) set.seed(1) train.index <- createDataPartition(breast$Class, p = .7, list = FALSE) train <- breast[ train.index,] test <- breast[-train.index,] cls <- which(colnames(breast) == "Class") #% LABELED labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE) train[-labeled.index,cls] <- NA m <- LinearTSVMSSLR() %>% fit(Class ~ ., data = train) #Accuracy predict(m,test) %>% bind_cols(test) %>% metrics(truth = "Class", estimate = .pred_class)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.