General Interface Pairwise Constrained Clustering By Local Search
Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints
as input and produce a clustering as output.
cclsSSLR( n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 1, tabuIter = 100, tabuLength = 20 )
n_clusters |
A number of clusters to be considered. Default is NULL (num classes) |
mustLink |
A list of must-link constraints. NULL Default, constrints same label |
cantLink |
A list of cannot-link constraints. NULL Default, constrints with different label |
max_iter |
maximum iterations in KMeans. Default is 1 |
tabuIter |
Number of iteration in Tabu search |
tabuLength |
The number of elements in the Tabu list |
This models only returns labels, not centers
Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung
Pairwise Constrained Clustering by Local Search
2016
library(tidyverse) library(caret) library(SSLR) library(tidymodels) data <- iris set.seed(1) #% LABELED cls <- which(colnames(iris) == "Species") labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE) data[-labeled.index,cls] <- NA m <- cclsSSLR(max_iter = 1) %>% fit(Species ~ ., data) #Get labels (assing clusters), type = "raw" return factor labels <- m %>% cluster_labels() print(labels)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.