General Interface MPC K-Means Algorithm
Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints
as input and produce a clustering as output.
mpckmSSLR(n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 10)
n_clusters |
A number of clusters to be considered. Default is NULL (num classes) |
mustLink |
A list of must-link constraints. NULL Default, constrints same label |
cantLink |
A list of cannot-link constraints. NULL Default, constrints with different label |
max_iter |
maximum iterations in KMeans. Default is 10 |
This models only returns labels, not centers
Bilenko, Basu, Mooney
Integrating Constraints and Metric Learning in Semi-Supervised Clustering
2004
library(tidyverse) library(caret) library(SSLR) library(tidymodels) data <- iris set.seed(1) #% LABELED cls <- which(colnames(iris) == "Species") labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE) data[-labeled.index,cls] <- NA m <- mpckmSSLR() %>% fit(Species ~ ., data) #Get labels (assing clusters), type = "raw" return factor labels <- m %>% cluster_labels() print(labels)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.