Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

NormalizeData

Normalize Data


Description

Normalize the count data present in a given assay.

Usage

NormalizeData(object, ...)

## Default S3 method:
NormalizeData(
  object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  block.size = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'Assay'
NormalizeData(
  object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  verbose = TRUE,
  ...
)

## S3 method for class 'Seurat'
NormalizeData(
  object,
  assay = NULL,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  verbose = TRUE,
  ...
)

Arguments

object

An object

...

Arguments passed to other methods

normalization.method

Method for normalization.

  • LogNormalize: Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log1p.

  • CLR: Applies a centered log ratio transformation

  • RC: Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6

scale.factor

Sets the scale factor for cell-level normalization

margin

If performing CLR normalization, normalize across features (1) or cells (2)

block.size

How many cells should be run in each chunk, will try to split evenly across threads

verbose

display progress bar for normalization procedure

assay

Name of assay to use

Value

Returns object after normalization

Examples

## Not run: 
data("pbmc_small")
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)

## End(Not run)

Seurat

Tools for Single Cell Genomics

v4.0.1
GPL-3 | file LICENSE
Authors
Andrew Butler [ctb] (<https://orcid.org/0000-0003-3608-0463>), Saket Choudhary [ctb] (<https://orcid.org/0000-0001-5202-7633>), Charlotte Darby [ctb] (<https://orcid.org/0000-0003-2195-5300>), Jeff Farrell [ctb], Christoph Hafemeister [ctb] (<https://orcid.org/0000-0001-6365-8254>), Yuhan Hao [ctb] (<https://orcid.org/0000-0002-1810-0822>), Paul Hoffman [aut, cre] (<https://orcid.org/0000-0002-7693-8957>), Jaison Jain [ctb] (<https://orcid.org/0000-0002-9478-5018>), Efthymia Papalexi [ctb] (<https://orcid.org/0000-0001-5898-694X>), Patrick Roelli [ctb], Rahul Satija [ctb] (<https://orcid.org/0000-0001-9448-8833>), Karthik Shekhar [ctb], Avi Srivastava [ctb] (<https://orcid.org/0000-0001-9798-2079>), Tim Stuart [ctb] (<https://orcid.org/0000-0002-3044-0897>), Kristof Torkenczy [ctb] (<https://orcid.org/0000-0002-4869-7957>), Shiwei Zheng [ctb] (<https://orcid.org/0000-0001-6682-6743>), Satija Lab and Collaborators [fnd]
Initial release
2021-03-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.