Generates bootstrapped single cell data
SignacBoot
uses a Seurat object or an expression matrix and performs feature selection, normalization and bootstrapping
to generate a training data set to be used for cell type or cluster classification.
SignacBoot( E, L, labels, size = 1000, impute = TRUE, spring.dir = NULL, logfc.threshold = 0.25, p.val.adj = 0.05, verbose = TRUE )
E |
a gene (rows) by cell (column) matrix, sparse matrix or a Seurat object. Rows are HUGO symbols. |
L |
cell type categories for learning. |
labels |
cell type labels corresponding to the columns of E. |
size |
Number of bootstrapped samples for machine learning. Default is 1,000. |
impute |
if TRUE, performs imputation prior to bootstrapping (see |
spring.dir |
if using SPRING, directory to categorical_coloring_data.json. Default is NULL. |
logfc.threshold |
Cutoff for feature selection. Default is 0.25. |
p.val.adj |
Cutoff for feature selection. Default is 0.05. |
verbose |
if TRUE, code speaks. Default is TRUE. |
Training data set (data.frame) to be used for building new models=.
## Not run: # load Seurat object from SignacFast example P <- readRDS("pbmcs.rds") # run feature selection + bootstrapping to generate 2,000 bootstrapped cells x = P@meta.data$celltypes R_learned = SignacBoot(P, L = c("B.naive", "B.memory"), labels = x) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.