Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

EDR

Compute the empirical detection rate for Type I errors and Power


Description

Computes the detection rate for determining empirical Type I error and power rates using information from p-values.

Usage

EDR(p, alpha = 0.05, unname = FALSE)

Arguments

p

a numeric vector or matrix/data.frame of p-values from the desired statistical estimator. If a matrix, each statistic must be organized by column, where the number of rows is equal to the number of replications

alpha

the nominal detection rate to be studied (typical values are .10, .05, and .01). Default is .05

unname

logical; apply unname to the results to remove any variable names?

Author(s)

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280. doi: 10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simulation. Journal of Statistics Education, 24(3), 136-156. doi: 10.1080/10691898.2016.1246953

See Also

Examples

rates <- numeric(100)
for(i in 1:100){
   dat <- rnorm(100)
   rates[i] <- t.test(dat)$p.value
}

EDR(rates)
EDR(rates, alpha = .01)

# multiple rates at once
rates <- cbind(runif(1000), runif(1000))
EDR(rates)

SimDesign

Structure for Organizing Monte Carlo Simulation Designs

v2.3
GPL (>= 2)
Authors
Phil Chalmers [aut, cre] (<https://orcid.org/0000-0001-5332-2810>), Matthew Sigal [ctb], Ogreden Oguzhan [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.