Compute the (normalized) root mean square error
Computes the average deviation (root mean square error; also known as the root mean square deviation) of a sample estimate from the parameter value. Accepts estimate and parameter values, as well as estimate values which are in deviation form.
RMSE( estimate, parameter = NULL, type = "RMSE", MSE = FALSE, percent = FALSE, unname = FALSE ) RMSD( estimate, parameter = NULL, type = "RMSE", MSE = FALSE, percent = FALSE, unname = FALSE )
estimate |
a |
parameter |
a |
type |
type of deviation to compute. Can be |
MSE |
logical; return the mean square error equivalent of the results instead of the root
mean-square error (in other words, the result is squared)? Default is |
percent |
logical; change returned result to percentage by multiplying by 100? Default is FALSE |
unname |
logical; apply |
returns a numeric
vector indicating the overall average deviation in the estimates
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi: 10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi: 10.1080/10691898.2016.1246953
MAE
pop <- 1 samp <- rnorm(100, 1, sd = 0.5) RMSE(samp, pop) dev <- samp - pop RMSE(dev) RMSE(samp, pop, type = 'NRMSE') RMSE(dev, type = 'NRMSE') RMSE(dev, pop, type = 'SRMSE') RMSE(samp, pop, type = 'CV') RMSE(samp, pop, type = 'RMSLE') # percentage reported RMSE(samp, pop, type = 'NRMSE') RMSE(samp, pop, type = 'NRMSE', percent = TRUE) # matrix input mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1)) RMSE(mat, parameter = 2) RMSE(mat, parameter = c(2, 3)) # different parameter associated with each column mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25)) RMSE(mat, parameter = c(2,3)) # same, but with data.frame df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1)) RMSE(df, parameter = c(2,2)) # parameters of the same size parameters <- 1:10 estimates <- parameters + rnorm(10) RMSE(estimates, parameters)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.