Run a summarise step for results that have been saved to the hard drive
When runSimulation()
uses the option save_results = TRUE
the R replication results from the Generate-Analyse functions are
stored to the hard drive. As such, additional summarise components
may be required at a later time, whereby the respective .rds
files
must be read back into R to be summarised. This function performs
the reading of these files, application of a provided summarise function,
and final collection of the respective results.
reSummarise( summarise, dir = NULL, files = NULL, results = NULL, Design = NULL, fixed_objects = NULL, boot_method = "none", boot_draws = 1000L, CI = 0.95 )
summarise |
a summarise function to apply to the read-in files.
See |
dir |
directory pointing to the .rds files to be
read-in that were saved from |
files |
(optional) names of files to read-in. If |
results |
(optional) the results of Alternatively, if |
Design |
(optional) if |
fixed_objects |
(optional) see |
boot_method |
method for performing non-parametric bootstrap confidence intervals
for the respective meta-statistics computed by the |
boot_draws |
number of non-parametric bootstrap draws to sample for the |
CI |
bootstrap confidence interval level (default is 95%) |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi: 10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi: 10.1080/10691898.2016.1246953
Design <- data.frame(N = c(10, 20, 30)) Generate <- function(condition, fixed_objects = NULL) { dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5) dat } Analyse <- function(condition, dat, fixed_objects = NULL) { ret <- mean(dat) # mean of the sample data vector ret } ## Not run: # run the simulation runSimulation(design=Design, replications=50, generate=Generate, analyse=Analyse, summarise=NA, save_results=TRUE, save_details = list(save_results_dirname='simresults')) Summarise <- function(condition, results, fixed_objects = NULL){ ret <- c(mu=mean(results), SE=sd(results)) ret } res <- reSummarise(Summarise, dir = 'simresults/') res Summarise2 <- function(condition, results, fixed_objects = NULL) { mean(results) } res2 <- reSummarise(Summarise2, dir = 'simresults/') res2 SimClean('simresults/') ## End(Not run) ### # similar to above, but using objects defined in workspace results <- runSimulation(design=Design, replications=50, generate=Generate, analyse=Analyse) str(results) Summarise <- function(condition, results, fixed_objects = NULL){ ret <- c(mu=mean(results), SE=sd(results)) ret } res <- reSummarise(Summarise, results=results, Design=Design) res res <- reSummarise(Summarise, results=results, boot_method = 'basic') res ### # Also similar, but storing the results within the summarised simulation Summarise <- function(condition, results, fixed_objects = NULL){ ret <- c(mu=mean(results), SE=sd(results)) ret } res <- runSimulation(design=Design, replications=50, store_results = TRUE, generate=Generate, analyse=Analyse, summarise=Summarise) res # internal results stored results <- SimExtract(res, what = 'results') str(results) # pass SimDesign object to results res <- reSummarise(Summarise, results=res, boot_method = 'basic') res
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.