The Generalized Extreme Value Distribution
Density, distribution function, quantile function and random generation for the GP distribution with location equal to 'loc', scale equal to 'scale' and shape equal to 'shape'.
rgev(n, loc = 0, scale = 1, shape = 0) pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
loc |
vector of the location parameters. |
scale |
vector of the scale parameters. |
shape |
a numeric of the shape parameter. |
lower.tail |
logical; if TRUE (default), probabilities are Pr[ X <= x], otherwise, Pr[X > x]. |
log |
logical; if TRUE, probabilities p are given as log(p). |
If 'loc', 'scale' and 'shape' are not specified they assume the default values of '0', '1' and '0', respectively.
The GEV distribution function for loc = u, scale = σ and shape = ξ is
G(z) = exp[-{1 + ξ (x - u) / σ}^(-1/ξ)]
for 1 + ξ (x - u) / σ > 0 and x > u, where σ > 0. If ξ = 0, the distribution is defined by continuity corresponding to the Gumbel distribution.
dgev(0.1) rgev(100, 1, 2, 0.2) qgev(seq(0.1, 0.9, 0.1), 1, 0.5, -0.2) pgev(12.6, 2, 0.5, 0.1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.