Standard Error Estimation
Standard error computation for objects of the classes tam
and tam.mml.
tam.se(tamobj, item_pars=TRUE, ...) tam_mml_se_quick(tamobj, numdiff.parm=0.001, item_pars=TRUE ) tam_latreg_se_quick(tamobj, numdiff.parm=0.001 )
| tamobj | An object generated by  | 
| item_pars | Logical indicating whether standard errors should also be computed for item parameters | 
| numdiff.parm | Step width parameter for numerical differentiation | 
| ... | Further arguments to be passed | 
Covariances between parameters estimates are ignored in this standard error calculation. The standard error is obtained by numerical differentiation.
A list with following entries:
| xsi | Data frame with ξ parameters ( | 
| beta | Data frame with β regression parameters and their standard error estimates | 
| B | Data frame with loading parameters and their corresponding standard errors | 
Standard error estimation for variances and covariances is not yet
implemented.
Standard error estimation for loading parameters in case of
irtmodel='GPCM.design' is highly experimental.
#############################################################################
# EXAMPLE 1: 1PL model, data.sim.rasch
#############################################################################
data(data.sim.rasch)
# estimate Rasch model
mod1 <- TAM::tam.mml(resp=data.sim.rasch[1:500,1:10])
# standard error estimation
se1 <- TAM::tam.se( mod1 )
# proportion of standard errors estimated by 'tam.se' and 'tam.mml'
prop1 <- se1$xsi$se / mod1$xsi$se
##   > summary( prop1 )
##      Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
##     1.030   1.034   1.035   1.036   1.039   1.042
##=> standard errors estimated by tam.se are a bit larger
## Not run: 
#############################################################################
# EXAMPLE 2: Standard errors differential item functioning
#############################################################################
data(data.ex08)
formulaA <- ~ item*female
resp <- data.ex08[["resp"]]
facets <- as.data.frame( data.ex08[["facets"]] )
# investigate DIF
mod <- TAM::tam.mml.mfr( resp=resp, facets=facets, formulaA=formulaA )
summary(mod)
# estimate standard errors
semod <- TAM::tam.se(mod)
prop1 <- semod$xsi$se / mod$xsi$se
summary(prop1)
# plot differences in standard errors
plot( mod$xsi$se, semod$xsi$se, pch=16, xlim=c(0,.15), ylim=c(0,.15),
    xlab="Standard error 'tam.mml'", ylab="Standard error 'tam.se'" )
lines( c(-6,6), c(-6,6), col="gray")
round( cbind( mod$xsi, semod$xsi[,-1] ), 3 )
  ##                    xsi se.xsi   N    est    se
  ##   I0001         -1.956  0.092 500 -1.956 0.095
  ##   I0002         -1.669  0.085 500 -1.669 0.088
  ##   [...]
  ##   I0010          2.515  0.108 500  2.515 0.110
  ##   female1       -0.091  0.025 500 -0.091 0.041
  ##   I0001:female1 -0.051  0.070 500 -0.051 0.071
  ##   I0002:female1  0.085  0.067 500  0.085 0.068
  ##   [...]
  ##   I0009:female1 -0.019  0.068 500 -0.019 0.068
  ##
#=> The largest discrepancy in standard errors is observed for the
#    main female effect (.041 in 'tam.se' instead of .025 in 'tam.mml')
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.