Run adaptive test assembly
Shadow is a test assembly function to perform adaptive test assembly based on the generalized shadow-test framework.
Shadow( config, constraints = NULL, true_theta = NULL, data = NULL, prior = NULL, prior_par = NULL, exclude = NULL, include_items_for_estimation = NULL, force_solver = FALSE, session = NULL ) ## S4 method for signature 'config_Shadow' Shadow( config, constraints = NULL, true_theta = NULL, data = NULL, prior = NULL, prior_par = NULL, exclude = NULL, include_items_for_estimation = NULL, force_solver = FALSE, session = NULL )
config |
a |
constraints |
a |
true_theta |
(optional) true theta values to use in simulation. Either |
data |
(optional) a matrix containing item response data to use in simulation. Either |
prior |
(optional) prior density at each |
prior_par |
(optional) normal distribution parameters |
exclude |
(optional) a list containing item names in |
include_items_for_estimation |
(optional) an examinee-wise list containing:
|
force_solver |
if |
session |
(optional) used to communicate with Shiny app |
Shadow returns an output_Shadow_all object containing assembly results.
van der Linden, W. J., Reese, L. M. (1998). A model for optimal constrained adaptive testing. Applied Psychological Measurement, 22, 259–270.
van der Linden, W. J. (1998). Optimal assembly of psychological and educational tests. Applied Psychological Measurement, 22, 195–211.
van der Linden, W. J. (2000). Optimal assembly of tests with item sets. Applied Psychological Measurement, 24, 225–240.
van der Linden, W. J. (2005). Linear models for optimal test design. Springer Science & Business Media.
config <- createShadowTestConfig() true_theta <- rnorm(1) solution <- Shadow(config, constraints_science, true_theta) solution@output
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.