Compute maximum likelihood estimates of theta
mle is a function to compute maximum likelihood estimates of theta.
mle( object, select = NULL, resp, start_theta = NULL, max_iter = 100, crit = 0.001, truncate = FALSE, theta_range = c(-4, 4), max_change = 1, use_step_size = FALSE, step_size = 0.5, do_Fisher = TRUE ) ## S4 method for signature 'item_pool' mle( object, select = NULL, resp, start_theta = NULL, max_iter = 50, crit = 0.005, truncate = FALSE, theta_range = c(-4, 4), max_change = 1, use_step_size = FALSE, step_size = 0.5, do_Fisher = TRUE ) MLE( object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001, theta_range = c(-4, 4), truncate = FALSE, max_change = 1, do_Fisher = TRUE ) ## S4 method for signature 'test' MLE( object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001, theta_range = c(-4, 4), truncate = FALSE, max_change = 1, do_Fisher = TRUE ) ## S4 method for signature 'test_cluster' MLE(object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001)
object |
an |
select |
(optional) if item indices are supplied, only the specified items are used. |
resp |
item response on all (or selected) items in the |
start_theta |
(optional) initial theta values. If not supplied, EAP estimates using uniform priors are used as initial values. Uniform priors are computed using the |
max_iter |
maximum number of iterations. (default = |
crit |
convergence criterion to use. (default = |
truncate |
set |
theta_range |
a range of theta values to bound the estimate. Only effective when |
max_change |
upper bound to impose on the absolute change in theta between iterations. Absolute changes exceeding this value will be capped to |
use_step_size |
set |
step_size |
upper bound to impose on the absolute change in initial theta and estimated theta. Absolute changes exceeding this value will be capped to |
do_Fisher |
set |
mle returns a list containing estimated values.
th theta value.
se standard error.
conv TRUE if estimation converged.
trunc TRUE if truncation was applied on th.
mle(itempool_fatigue, resp = resp_fatigue_data[10, ]) mle(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.