Bootstrap percentile intervals for Tucker3
Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.
bootstrapT3(X, A, B, C, G, n, m, p, r1, r2, r3, conv, centopt, normopt, optimalmatch, laba, labb, labc)
X |
Matrix (or data.frame coerced to a matrix) of order ( |
A |
Component matrix for the |
B |
Component matrix for the |
C |
Component matrix for the |
G |
Matricized core array (frontal slices) |
n |
Number of |
m |
Number of |
p |
Number of |
r1 |
Number of extracted components for the |
r2 |
Number of extracted components for the |
r3 |
Number of extracted components for the |
conv |
Convergence criterion |
centopt |
Centering option (see |
normopt |
Normalization option (see |
optimalmatch |
Binary indicator (0 if the procedure uses matching via orthogonal rotation towards full solutions, 1 if the procedure uses matching via optimal transformation towards full solutions) |
laba |
Optional vector of length |
labb |
Optional vector of length |
labc |
Optional vector of length |
A list including the following components:
Bint |
Bootstrap percentile interval of every element of |
Cint |
Bootstrap percentile interval of every element of |
Gint |
Bootstrap percentile interval of matricized core array (frontal slices) |
fpint |
Bootstrap percentile interval for the goodness of fit index expressed as a percentage |
The preprocessing must be done in same way as for sample analysis.
The resampling mode must be the A
-mode.
The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.
Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it
H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. Journal of Chemometrics 18:22–36.
data(Bus) # labels for Bus data laba <- rownames(Bus) labb <- substr(colnames(Bus)[1:5],1,1) labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8) # T3 solution BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6) ## Not run: # Bootstrap analysis on T3 solution using matching via optimal transformation boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2, 1e-6, 0, 0, 1, laba, labb, labc) # Bootstrap analysis on T3 solution using matching via orthogonal rotation # (when labels are not available) boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2, 1e-6, 0, 0, 0) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.