Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

GenParetoPars

Generalised Pareto distribution parameter estimates


Description

Estimated parameters from a sample (with Lmoments or maximum likelihood estimation) or from L1 (first L-moment), Lcv (linear coefficient of variation), and LSkew (linear skewness)

Usage

GenParetoPars(x = NULL, mle = FALSE, L1, LCV, LSKEW)

Arguments

x

numeric vector. The sample

mle

logical argument with a default of FALSE. If FALSE the parameters are estimated with Lmoments, if TRUE the parameters are estimated by maximum likelihood estimation

L1

first Lmoment

LCV

linear coefficient of variation

LSKEW

linear skewness

Details

The L-moment estimated parameters are by the method detailed in 'Hosking J. Wallis J. 1997 Regional Frequency Analysis: An Approach Based on L-moments. Cambridge University Press, New York'

Value

Parameter estimates (location, scale, shape)

Author(s)

Anthony Hammond

Examples

#Get a peaks over threshold sample and estimate the parameters using Lmoments
ThamesPOT <- ThamesPOT <- POTextract(ThamesPQ[,c(1,3)], thresh = 0.90)
GenParetoPars(ThamesPOT$peak)
#Estimate parameters using MLE
GenParetoPars(ThamesPOT$peak, mle = TRUE)
#calculate Lmoments and estimate the parmeters with L1, Lcv and Lskew
Lmoms(ThamesPOT$peak)
GenParetoPars(L1 = 282.2071, LCV = 0.1753749, LSKEW = 0.2576356)

UKFE

UK Flood Estimation

v0.1.6
GPL-3
Authors
Anthony Hammond
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.