Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dag_ex0

Synthetic validation data set for use with abn library examples


Description

300 observations simulated from a DAG with 10 binary variables, 10 Gaussian variables and 10 poisson variables.

Usage

ex0.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function and comprises of only an intercept term).

b1

binary, logit()=1

b2

binary, logit()=1

b3

binary, logit()=1

b4

binary, logit()=1

b5

binary, logit()=1

b6

binary, logit()=1

b7

binary, logit()=1

b8

binary, logit()=1

b9

binary, logit()=1

b10

binary, logit()=1

g1

gaussian, identity()=1

g2

gaussian, identity()=1

g3

gaussian, identity()=1

g4

gaussian, identity()=1

g5

gaussian, identity()=1

g6

gaussian, identity()=1

g7

gaussian, identity()=1

g8

gaussian, identity()=1

g9

gaussian, identity()=1

g10

gaussian, identity()=1

p1

poisson, log()=1

p2

poisson, log()=1

p3

poisson, log()=1

p4

poisson, log()=1

p5

poisson, log()=1

p6

poisson, log()=1

p7

poisson, log()=1

p8

poisson, log()=1

p9

poisson, log()=1

p10

poisson, log()=1

Examples

## Not run: 
## The dataset was (essentially) generated using the following code:
datasize <- 300   
tmp <- c(rep("y", as.integer(datasize/2)), rep("n", as.integer(datasize/2)))
set.seed(1)

ex0.dag.data <- data.frame(b1=sample(tmp, size=datasize, replace=TRUE),
                b2=sample(tmp, size=datasize, replace=TRUE),
                b3=sample(tmp, size=datasize, replace=TRUE),
                b4=sample(tmp, size=datasize, replace=TRUE),
                b5=sample(tmp, size=datasize, replace=TRUE),
                b6=sample(tmp, size=datasize, replace=TRUE),
                b7=sample(tmp, size=datasize, replace=TRUE),
                b8=sample(tmp, size=datasize, replace=TRUE),
                b9=sample(tmp, size=datasize, replace=TRUE),
                b10=sample(tmp, size=datasize, replace=TRUE),
                g1=rnorm(datasize, mean=0,sd=1),
                g2=rnorm(datasize, mean=0,sd=1),
                g3=rnorm(datasize, mean=0,sd=1),
                g4=rnorm(datasize, mean=0,sd=1),
                g5=rnorm(datasize, mean=0,sd=1),
                g6=rnorm(datasize, mean=0,sd=1),
                g7=rnorm(datasize, mean=0,sd=1),
                g8=rnorm(datasize, mean=0,sd=1),
                g9=rnorm(datasize, mean=0,sd=1),
                g10=rnorm(datasize, mean=0,sd=1),
                p1=rpois(datasize, lambda=10),
                p2=rpois(datasize, lambda=10),
                p3=rpois(datasize, lambda=10),
                p4=rpois(datasize, lambda=10),
                p5=rpois(datasize, lambda=10),
                p6=rpois(datasize, lambda=10),
                p7=rpois(datasize, lambda=10),
                p8=rpois(datasize, lambda=10),
                p9=rpois(datasize, lambda=10),
                p10=rpois(datasize, lambda=10))

## End(Not run)

abn

Modelling Multivariate Data with Additive Bayesian Networks

v2.5-0
GPL (>= 2)
Authors
Gilles Kratzer [aut, cre] (<https://orcid.org/0000-0002-5929-8935>), Fraser Iain Lewis [aut] (<https://orcid.org/0000-0003-4580-2712>), Reinhard Furrer [ctb] (<https://orcid.org/0000-0002-6319-2332>), Marta Pittavino [ctb] (<https://orcid.org/0000-0002-1232-1034>)
Initial release
2021-04-21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.