Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

hamiltonian

Finds a Hamiltonian path or cycle


Description

A Hamiltionian path or cycle (a.k.a. Hamiltonian circuit) is a path through a graph that visits each vertex exactly once, resp. a closed path through the graph.

Usage

hamiltonian(edges, start = 1, cycle = TRUE)

Arguments

edges

an edge list describing an undirected graph.

start

vertex number to start the path or cycle.

cycle

Boolean, should a path or a full cycle be found.

Details

hamiltonian() applies a backtracking algorithm that is relatively efficient for graphs of up to 30–40 vertices. The edge list is first transformed to a list where the i-th component contains the list of all vertices connected to vertex i.

The edge list must be of the form c(v1, v2, v3, v2, ...) meaning that there are edges v1 --> v2, v3 --> v4, etc., connecting these vertices. Therefore, an edge list has an even number of entries.

If the function returns NULL, there is no Hamiltonian path or cycle. The function does not check if the graph is connected or not. And if cycle = TRUE is used, then there also exists an edge from the last to the first entry in the resulting path.

Ifa Hamiltonian cycle exists in the graph it will be found whatever the starting vertex was. For a Hamiltonian path this is different and a successful search may very well depend on the start.

Value

Returns a vector containing vertex number of a valid path or cycle, or NULL if no path or cycle has been found (i.e., does not exist); If a cycle was requested, there exists an edge from the last to the first vertex in this list of edges.

Note

See the igraph package for more information about handling graphs and defining them through edge lists or other constructs.

Author(s)

Hans W. Borchers

References

Papadimitriou, Ch. H., and K. Steiglitz (1998). Optimization Problems: Algorithms and Complexity. Prentice-Hall/Dover Publications.

See Also

Package igraph

Examples

## Dodekaeder graph
D20_edges <- c(
     1,  2,  1,  5,  1,  6,  2,  3,  2,  8,  3,  4,  3, 10,  4,  5,  4, 12,
     5, 14,  6,  7,  6, 15,  7,  8,  7, 16,  8,  9,  9, 10,  9, 17, 10, 11,
    11, 12, 11, 18, 12, 13, 13, 14, 13, 19, 14, 15, 15, 20, 16, 17, 16, 20, 
    17, 18, 18, 19, 19, 20)
hamiltonian(D20_edges, cycle = TRUE)
# [1]  1  2  3  4  5 14 13 12 11 10  9  8  7 16 17 18 19 20 15  6
hamiltonian(D20_edges, cycle = FALSE)
# [1]  1  2  3  4  5 14 13 12 11 10  9  8  7  6 15 20 16 17 18 19

## Herschel graph
# The Herschel graph the smallest non-Hamiltonian polyhedral graph.
H11_edges <- c(
     1,  2,  1,  8,  1,  9,  1, 10,  2,  3,  2, 11,  3,  4,  3,  9,  4,  5,
     4, 11,  5,  6,  5,  9,  5, 10,  6,  7,  6, 11,  7,  8,  7, 10,  8, 11)
hamiltonian(H11_edges, cycle = FALSE)
# NULL

## Not run: 
## Example: Graph constructed from squares
N <- 45  # 23, 32, 45
Q <- (2:trunc(sqrt(2*N-1)))^2
sq_edges <- c()
for (i in 1:(N-1)) {
    for (j in (i+1):N) {
        if ((i+j) 
            sq_edges <- c(sq_edges, i, j)
    }
}

require(igraph)
sq_graph <- make_graph(sq_edges, directed=FALSE)
plot(sq_graph)

if (N == 23) {
    # does not find a path with start=1 ...
    hamiltonian(sq_edges, start=18, cycle=FALSE)
    # hamiltonian(sq_edges)                     # NULL
} else if (N == 32) {
    # the first of these graphs that is Hamiltonian ...
    # hamiltonian(sq_edges, cycle=FALSE)
    hamiltonian(sq_edges)
} else if (N == 45) {
    # takes much too long ...
    # hamiltonian(sq_edges, cycle=FALSE)
    hamiltonian(sq_edges)
}
## End(Not run)

adagio

Discrete and Global Optimization Routines

v0.8.4
GPL (>= 3)
Authors
Hans W. Borchers [aut, cre]
Initial release
2021-04-30

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.