Archetype algorithm to raw data with the functional Frobenius norm
This is a slight modification of stepArchetypesRawData
to use the functional archetype algorithm with the Frobenius norm.
stepArchetypesRawData_funct(data, numArch, numRep = 3, verbose = TRUE, saveHistory = FALSE, PM)
data |
Data to obtain archetypes. |
numArch |
Number of archetypes to compute, from 1 to |
numRep |
For each |
verbose |
If TRUE, the progress during execution is shown. |
saveHistory |
Save execution steps. |
PM |
Penalty matrix obtained with |
A list with the archetypes.
Irene Epifanio
Cutler, A. and Breiman, L., Archetypal Analysis. Technometrics, 1994, 36(4), 338-347, https://doi.org/10.2307/1269949
Epifanio, I., Functional archetype and archetypoid analysis, 2016. Computational Statistics and Data Analysis 104, 24-34, https://doi.org/10.1016/j.csda.2016.06.007
Eugster, M.J.A. and Leisch, F., From Spider-Man to Hero - Archetypal Analysis in R, 2009. Journal of Statistical Software 30(8), 1-23, https://doi.org/10.18637/jss.v030.i08
## Not run: library(fda) ?growth str(growth) hgtm <- t(growth$hgtm) # Create basis: basis_fd <- create.bspline.basis(c(1,ncol(hgtm)), 10) PM <- eval.penalty(basis_fd) # Make fd object: temp_points <- 1:ncol(hgtm) temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd) data_archs <- t(temp_fd$coefs) lass <- stepArchetypesRawData_funct(data = data_archs, numArch = 3, numRep = 5, verbose = FALSE, saveHistory = FALSE, PM) str(lass) length(lass[[1]]) class(lass[[1]]) class(lass[[1]][[5]]) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.