1-D plot of a numeric score by means/standard deviations computed using an external table of weights
This function represents a set of distributions on a numeric score using a mean-standard deviation display
s1d.distri(score, dfdistri, labels = colnames(dfdistri), at = 1:NCOL(dfdistri), yrank = TRUE, sdSize = 1, facets = NULL, plot = TRUE, storeData = TRUE, add = FALSE, pos = -1, ...)
score |
a numeric vector (or a data frame) used to produce the plot |
dfdistri |
a data frame containing the mass distribution in which each column is a class |
yrank |
a logical to draw the distributions sorted by means ascending order |
labels |
the labels' names drawn for each distribution |
at |
a numeric vector used as an index |
sdSize |
a numeric for the size of the standard deviation segments |
facets |
a factor splitting |
plot |
a logical indicating if the graphics is displayed |
storeData |
a logical indicating if the data are stored in
the returned object. If |
add |
a logical. If |
pos |
an integer indicating the position of the
environment where the data are stored, relative to the environment
where the function is called. Useful only if |
... |
additional graphical parameters (see
|
Graphical parameters for rugs are available in plines
of adegpar
.
Some appropriated graphical parameters in p1d
are also available.
The weighted means and standard deviations of class are available in the object slot stats
using object@stats$means
and object@stats$sds
.
An object of class ADEg
(subclass S1.distri
) or ADEgS
(if add
is TRUE
and/or
if facets or data frame for score
are used).
The result is displayed if plot
is TRUE
.
Alice Julien-Laferriere, Aurelie Siberchicot aurelie.siberchicot@univ-lyon1.fr and Stephane Dray
w <- seq(-1, 1, le = 200) distri <- data.frame(lapply(1:50, function(x) sample(200:1) * ((w >= (- x / 50)) & (w <= x / 50)))) names(distri) <- paste("w", 1:50, sep = "") g11 <- s1d.distri(w, distri, yrank = TRUE, sdS = 1.5, plot = FALSE) g12 <- s1d.distri(w, distri, yrank = FALSE, sdS = 1.5, plot = FALSE) G1 <- ADEgS(c(g11, g12), layout = c(1, 2)) data(rpjdl, package = "ade4") coa1 <- ade4::dudi.coa(rpjdl$fau, scannf = FALSE) G2 <- s1d.distri(coa1$li[,1], rpjdl$fau, labels = rpjdl$frlab, plabels = list(cex = 0.8, boxes = list(draw = FALSE))) ## Not run: g31 <- s1d.distri(coa1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)), plot = FALSE) nsc1 <- ade4::dudi.nsc(rpjdl$fau, scannf = FALSE) g32 <- s1d.distri(nsc1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)), plot = FALSE) g33 <- s.label(coa1$l1, plot = FALSE) g34 <- s.label(nsc1$l1, plot = FALSE) G3 <- ADEgS(c(g31, g32, g33, g34), layout = c(2, 2)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.