Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

index_lp

The l_p-index


Description

Given a sequence of n non-negative numbers x=(x_1,…,x_n), where x_i ≥ x_j for i ≤ j, the l_p-index for p=∞ equals to

l_p(x) = arg max_(i,x_i) { i*x_i } for i=1,…,n

if n ≥ 1, or l_∞(x)=0 otherwise. Note that if (i,x_i)=l_∞(x), then

MAXPROD(x) = prod(l_∞(x)) = i*x_i,

where MAXPROD is the index proposed in (Kosmulski, 2007), see index_maxprod. Moreover, this index corresponds to the Shilkret integral of x w.r.t. some monotone measure, cf. (Gagolewski, Debski, Nowakiewicz, 2013).

For the definition of the l_p-index for p < ∞ we refer to (Gagolewski, Grzegorzewski, 2009a).

Usage

index_lp(x, p = Inf, projection = prod)

index.lp(x, p = Inf, projection = prod)  # deprecated alias

Arguments

x

a non-negative numeric vector

p

index order, p in [1,∞]; defaults (Inf).

projection

function

Details

The l_p-index, by definition, is not an impact function, as it produces 2 numeric values. Thus, it should be projected to one dimension. However, you may set the projection argument to identity so as to obtain the 2-dimensional index

If a non-increasingly sorted vector is given, the function has O(n) run-time for any p, see (Gagolewski, Debski, Nowakiewicz, 2013).

For historical reasons, this function is also available via an alias, index.lp [but its usage is deprecated].

Value

result of projection(c(i, x_i))

References

Gagolewski M., Grzegorzewski P., A geometric approach to the construction of scientific impact indices, Scientometrics 81(3), 2009a, pp. 617-634.

Gagolewski M., Debski M., Nowakiewicz M., Efficient Algorithm for Computing Certain Graph-Based Monotone Integrals: the lp-Indices, In: Mesiar R., Bacigal T. (Eds.), Proc. Uncertainty Modelling, STU Bratislava, ISBN:978-80-227-4067-8, 2013, pp. 17-23.

Kosmulski M., MAXPROD - A new index for assessment of the scientific output of an individual, and a comparison with the h-index, Cybermetrics 11(1), 2007.

Shilkret, N., Maxitive measure and integration, Indag. Math. 33, 1971, pp. 109-116.

See Also

Examples

x <- runif(100, 0, 100)
index.lp(x, Inf, identity)  # two-dimensional value, can not be used
                            # directly in the analysis
index.lp(x, Inf, prod)      # the MAXPROD-index (one-dimensional) [default]

agop

Aggregation Operators and Preordered Sets

v0.2-3
LGPL (>= 3)
Authors
Marek Gagolewski [aut, cre] (<https://orcid.org/0000-0003-0637-6028>), Anna Cena [ctb] (<https://orcid.org/0000-0001-8697-5383>)
Initial release
2020-01-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.