Kosmulski's MAXPROD-index
Given a sequence of n non-negative numbers x=(x_1,…,x_n), where x_i ≥ x_j ≥ 0 for i ≤ j, the MAXPROD-index (Kosmulski, 2007) for x is defined as
MAXPROD(x)=max{i x_i: i=1,…,n}
index_maxprod(x)
x |
a non-negative numeric vector |
If a non-increasingly sorted vector is given, the function has O(n) run-time.
The MAXPROD index is the same as the discrete Shilkret integral of x
w.r.t. the counting measure.
See index_lp
for a natural generalization.
a single numeric value
Kosmulski M., MAXPROD - A new index for assessment of the scientific output of an individual, and a comparison with the h-index, Cybermetrics 11(1), 2007.
Mesiar R., Gagolewski M., H-index and other Sugeno integrals: Some defects and their compensation, IEEE Transactions on Fuzzy Systems 24(6), 2016, pp. 1668-1672. doi:10.1109/TFUZZ.2016.2516579
Gagolewski M., Mesiar R., Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem, Information Sciences 263, 2014, pp. 166-174. doi:10.1016/j.ins.2013.12.004
Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.