Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

owa

WAM and OWA Operators


Description

Computes the Weighted Arithmetic Mean or the Ordered Weighted Averaging aggregation operator.

Usage

owa(x, w = rep(1/length(x), length(x)))

wam(x, w = rep(1/length(x), length(x)))

Arguments

x

numeric vector to be aggregated

w

numeric vector of the same length as x, with elements in [0,1], and such that sum(x)=1; weights

Details

The OWA operator is given by

OWA_w(x) = sum_i(w_i * x_(i))

where x_(i) denotes the i-th smallest value in x.

The WAM operator is given by

WAM_w(x) = sum_i(w_i * x_i)

If the elements in w do not sum up to 1, then they are normalized and a warning is generated.

Both functions by default return the ordinary arithmetic mean. Special cases of OWA include the trimmed mean (see mean) and Winsorized mean.

There is a strong, well-known connection between the OWA operators and the Choquet integrals.

Value

These functions return a single numeric value.

References

Choquet G., Theory of capacities, Annales de l'institut Fourier 5, 1954, pp. 131-295.

Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7

Yager R.R., On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man, and Cybernetics 18(1), 1988, pp. 183-190.

See Also

Other aggregation_operators: owmax


agop

Aggregation Operators and Preordered Sets

v0.2-3
LGPL (>= 3)
Authors
Marek Gagolewski [aut, cre] (<https://orcid.org/0000-0003-0637-6028>), Anna Cena [ctb] (<https://orcid.org/0000-0001-8697-5383>)
Initial release
2020-01-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.