RCB experiment of spring barley in United Kingdom
RCB experiment of spring barley in United Kingdom
A data frame with 225 observations on the following 4 variables.
col
column (also blocking factor)
row
row
yield
yield
gen
variety/genotype
RCB design, each column is one rep.
Used with permission of David Higdon.
Besag, J. E., Green, P. J., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems. Statistical Science, 10, 3-66. https://www.jstor.org/stable/2246224
Davison, A. C. 2003. Statistical Models. Cambridge University Press. Pages 534-535.
## Not run: library(agridat) data(besag.bayesian) dat <- besag.bayesian # Yield values were scaled to unit variance # var(dat$yield, na.rm=TRUE) # .999 # Besag Fig 2. Reverse row numbers to match Besag, Davison dat$rrow <- 76 - dat$row libs(lattice) xyplot(yield ~ rrow|col, dat, layout=c(1,3), type='s', xlab="row", ylab="yield", main="besag.bayesian") libs(asreml) # Use asreml to fit a model with AR1 gradient in rows dat <- transform(dat, cf=factor(col), rf=factor(rrow)) m1 <- asreml(yield ~ -1 + gen, data=dat, random= ~ ar1v(rf)) m1 <- update(m1) m1 <- update(m1) m1 <- update(m1) # Visualize trends, similar to Besag figure 2. # Need 'as.vector' because asreml4 uses a named vector dat$res <- unname(m1$resid) dat$geneff <- coef(m1)$fixed[as.numeric(dat$gen)] dat <- transform(dat, fert=yield-geneff-res) libs(lattice) xyplot(geneff ~ rrow|col, dat, layout=c(1,3), type='s', main="besag.bayesian - Variety effects", ylim=c(5,15 )) xyplot(fert ~ rrow|col, dat, layout=c(1,3), type='s', main="besag.bayesian - Fertility", ylim=c(-2,2)) xyplot(res ~ rrow|col, dat, layout=c(1,3), type='s', main="besag.bayesian - Residuals", ylim=c(-4,4)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.