Relative cotton yield for different soil potassium concentrations
Relative cotton yield for different soil potassium concentrations
A data frame with 24 observations on the following 2 variables.
yield
Relative yield
potassium
Soil potassium, ppm
Cate & Nelson used this data to determine the minimum optimal amount of soil potassium to achieve maximum yield.
Note, Fig 1 of Cate & Nelson does not match the data from Table 2. It sort of appears that points with high-concentrations of potassium were shifted left to a truncation point. Also, the calculations below do not quite match the results in Table 1. Perhaps the published data were rounded?
Cate, R.B. and Nelson, L.A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Journal, 35, 658–660. https://doi.org/10.2136/sssaj1971.03615995003500040048x
library(agridat) data(cate.potassium) dat <- cate.potassium names(dat) <- c('y','x') CateNelson <- function(dat){ dat <- dat[order(dat$x),] # Sort the data by x x <- dat$x y <- dat$y # Create a data.frame to store the results out <- data.frame(x=NA, mean1=NA, css1=NA, mean2=NA, css2=NA, r2=NA) css <- function(x) { var(x) * (length(x)-1) } tcss <- css(y) # Total corrected sum of squares for(i in 2:(length(y)-2)){ y1 <- y[1:i] y2 <- y[-(1:i)] out[i, 'x'] <- x[i] out[i, 'mean1'] <- mean(y1) out[i, 'mean2'] <- mean(y2) out[i, 'css1'] <- css1 <- css(y1) out[i, 'css2'] <- css2 <- css(y2) out[i, 'r2'] <- ( tcss - (css1+css2)) / tcss } return(out) } cn <- CateNelson(dat) ix <- which.max(cn$r2) with(dat, plot(y~x, ylim=c(0,110), xlab="Potassium", ylab="Yield")) title("cate.potassium - Cate-Nelson analysis") abline(v=dat$x[ix], col="skyblue") abline(h=(dat$y[ix] + dat$y[ix+1])/2, col="skyblue") ## Not run: # another approach with similar results # https://joe.org/joe/2013october/tt1.php libs("rcompanion") cateNelson(dat$x, dat$y, plotit=0) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.