Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

durban.splitplot

Split-plot experiment of barley with fungicide treatments


Description

Split-plot experiment of barley with fungicide treatments

Format

A data frame with 560 observations on the following 6 variables.

yield

yield, tonnes/ha

block

block, 4 levels

gen

genotype, 70 levels

fung

fungicide, 2 levels

row

row

bed

bed (column)

Details

Grown in 1995-1996 at the Scottish Crop Research Institute. Split-plot design with 4 blocks, 2 whole-plot fungicide treatments, and 70 barley varieties or variety mixes. Total area was 10 rows (north/south) by 56 beds (east/west).

Retrieved from: ftp://ftp.bioss.sari.ac.uk/pub/maria

Used with permission of Maria Durban.

Source

Durban, Maria and Hackett, Christine and McNicol, James and Newton, Adrian and Thomas, William and Currie, Iain. 2003. The practical use of semiparametric models in field trials, Journal of Agric Biological and Envir Stats, 8, 48-66. https://doi.org/10.1198/1085711031265.

Examples

## Not run: 

  library(agridat)
  data(durban.splitplot)
  dat <- durban.splitplot

  libs(desplot)
  desplot(dat, yield~bed*row,
          out1=block, out2=fung, num=gen, # aspect unknown
          main="durban.splitplot")


  # Durban 2003, Figure 2
  m20 <- lm(yield~gen + fung + gen:fung, data=dat)
  dat$resid <- m20$resid
  ## libs(lattice)
  ## xyplot(resid~row, dat, type=c('p','smooth'), main="durban.splitplot")
  ## xyplot(resid~bed, dat, type=c('p','smooth'), main="durban.splitplot")

  # Figure 4 doesn't quite match due to different break points
  libs(lattice)
  xyplot(resid ~ bed|factor(row), data=dat,
         main="durban.splitplot",
         type=c('p','smooth'))


  # Figure 6 - field trend
  # note, Durban used gam package like this
  # m2lo <- gam(yield ~ gen*fung + lo(row, bed, span=.082), data=dat)
  libs(mgcv)
  m2lo <- gam(yield ~ gen*fung + s(row, bed,k=45), data=dat)
  new2 <- expand.grid(row=unique(dat$row), bed=unique(dat$bed))
  new2 <- cbind(new2, gen="G01", fung="F1")
  p2lo <- predict(m2lo, newdata=new2)
  libs(lattice)
  wireframe(p2lo~row+bed, new2, aspect=c(1,.5),
            main="durban.splitplot - Field trend")

  libs(asreml) # asreml4
    
  # Table 5, variance components.  Table 6, F tests
  dat <- transform(dat, rowf=factor(row), bedf=factor(bed))
  dat <- dat[order(dat$rowf, dat$bedf),]
  m2a2 <- asreml(yield ~ gen*fung, random=~block/fung+units, data=dat,
                 resid =~ar1v(rowf):ar1(bedf))
  m2a2 <- update(m2a2)
  
  libs(lucid)
  vc(m2a2)
  ##             effect component std.error z.ratio bound 
  ##              block   0              NA      NA     B  NA
  ##         block:fung   0.01206  0.01512      0.8     P   0
  ##              units   0.02463  0.002465    10       P   0
  ##       rowf:bedf(R)   1              NA      NA     F   0
  ## rowf:bedf!rowf!cor   0.8836   0.03646     24       U   0
  ## rowf:bedf!rowf!var   0.1261   0.04434      2.8     P   0
  ## rowf:bedf!bedf!cor   0.9202   0.02846     32       U   0
  
  wald(m2a2)
  

## End(Not run)

agridat

Agricultural Datasets

v1.18
CC BY-SA 4.0
Authors
Kevin Wright [aut, cre] (<https://orcid.org/0000-0002-0617-8673>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.