RCB experiment of grape, disease incidence
Disease incidence on grape leaves in RCB experiment with 6 different treatments.
A data frame with 270 observations on the following 6 variables.
block
Block factor, 1-3
trt
Treatment factor, 1-6
vine
Vine factor, 1-3
shoot
Shoot factor, 1-5
diseased
Number of diseased leaves per shoot
total
Number of total leaves per shoot
These data come from a study of downy mildew on grapes. The experiment was conducted at Wooster, Ohio, on the experimental farm of the Ohio Agricultural Research and Development Center, Ohio State University.
There were 3 blocks with 6 treatments. Treatment 1 is the unsprayed control. On 30 Sep 1990, disease incidence was measured. For each plot, 5 randomly chosen shoots on each of the 3 vines were observed. The canopy was closed and shoots could be intertwined. On each shoot, the total number of leaves and the number of infected leaves were recorded.
Used with permission of Larry Madden.
Hughes, G. and Madden, LV. 1995. Some methods allowing for aggregated patterns of disease incidence in the analysis of data from designed experiments. Plant Pathology, 44, 927–943. https://doi.org/10.1111/j.1365-3059.1995.tb02651.x
Hans-Pieter Piepho. 1999. Analysing disease incidence data from designed experiments by generalized linear mixed models. Plant Pathology, 48, 668–684. https://doi.org/10.1046/j.1365-3059.1999.00383.x
## Not run: library(agridat) data(hughes.grapes) dat <- hughes.grapes dat <- transform(dat, rate = diseased/total, plot=trt:block) # Trt 1 has higher rate, more variable, Trt 3 lower rate, less variable libs(lattice) foo <- bwplot(rate ~ vine|block*trt, dat, main="hughes.grapes", xlab="vine") libs(latticeExtra) useOuterStrips(foo) # Table 1 of Piepho 1999 tapply(dat$rate, dat$trt, mean) # trt 1 does not match Piepho tapply(dat$rate, dat$trt, max) # Piepho model 3. Binomial data. May not be exactly the same model # Use the binomial count data with lme4 libs(lme4) m1 <- glmer(cbind(diseased, total-diseased) ~ trt + block + (1|plot/vine), data=dat, family=binomial) m1 # Switch from binomial counts to bernoulli data libs(aod) bdat <- splitbin(cbind(diseased, total-diseased) ~ block+trt+plot+vine+shoot, data=dat)$tab names(bdat)[2] <- 'y' # Using lme4 m2 <- glmer(y ~ trt + block + (1|plot/vine), data=bdat, family=binomial) m2 # Now using MASS:::glmmPQL libs(MASS) m3 <- glmmPQL(y ~ trt + block, data=bdat, random=~1|plot/vine, family=binomial) m3 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.