Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

john.alpha

Alpha lattice design of spring oats


Description

Alpha lattice design of spring oats

Format

A data frame with 72 observations on the following 5 variables.

plot

plot number

rep

replicate

block

incomplete block

gen

genotype (variety)

yield

dry matter yield (tonnes/ha)

Details

A spring oats trial grown in Craibstone, near Aberdeen. There were 24 varieties in 3 replicates, each consisting of 6 incomplete blocks of 4 plots. Planted in a resolvable alpha design. The plots were laid out in a single line.

Source

J. A. John & E. R. Williams (1995). Cyclic and computer generated designs, Chapman and Hall, London. Page 146.

References

Piepho, H.P. and Mohring, J. (2007), Computing heritability and selection response from unbalanced plant breeding trials, Genetics, 177, 1881-1888. https://doi.org/10.1534/genetics.107.074229

Examples

## Not run: 

  library(agridat)
  data(john.alpha)
  dat <- john.alpha
  
  # RCB (no incomplete block)
  m0 <- lm(yield ~ 0 + gen + rep, data=dat)

  # Block fixed (intra-block analysis) (bottom of table 7.4 in John)
  m1 <- lm(yield ~ 0 + gen + rep + rep:block, dat)
  anova(m1)

  # Block random (combined inter-intra block analysis)
  libs(lme4, lucid)
  m2 <- lmer(yield ~ 0 + gen + rep + (1|rep:block), dat)

  anova(m2)
  ## Analysis of Variance Table
  ##     Df Sum Sq Mean Sq  F value
  ## gen 24 380.43 15.8513 185.9942
  ## rep  2   1.57  0.7851   9.2123
  vc(m2)
  ##        grp        var1 var2    vcov  sdcor
  ##  rep:block (Intercept) <NA> 0.06194 0.2489
  ##   Residual        <NA> <NA> 0.08523 0.2919


  # Variety means.  John and Williams table 7.5.  Slight, constant
  # difference for each method as compared to John and Williams.
  means <- data.frame(rcb=coef(m0)[1:24],
                      ib=coef(m1)[1:24],
                      intra=fixef(m2)[1:24])
  head(means)
  ##             rcb       ib    intra
  ## genG01 5.201233 5.268742 5.146433
  ## genG02 4.552933 4.665389 4.517265
  ## genG03 3.381800 3.803790 3.537934
  ## genG04 4.439400 4.728175 4.528828
  ## genG05 5.103100 5.225708 5.075944
  ## genG06 4.749067 4.618234 4.575394
  
  libs(lattice)
  splom(means, main="john.alpha - means for RCB, IB, Intra-block")
  

  # ----------
  # asreml4

  libs(asreml,lucid)

  # Heritability calculation of Piepho & Mohring, Example 1

  m3 <- asreml(yield ~ 1 + rep, data=dat, random=~ gen + rep:block)
  sg2 <- summary(m3)$varcomp['gen','component'] # .142902
  
  # Average variance of a difference of two adjusted means (BLUP)
  
  p3 <- predict(m3, data=dat, classify="gen", sed=TRUE)
  # Matrix of pair-wise SED values, squared
  vdiff <- p3$sed^2
  # Average variance of two DIFFERENT means (using lower triangular of vdiff)
  vblup <- mean(vdiff[lower.tri(vdiff)]) # .05455038
  
  # Note that without sed=TRUE, asreml reports square root of the average variance
  # of a difference between the variety means, so the following gives the same value
  # predict(m3, data=dat, classify="gen")$avsed ^ 2 # .05455038
  
  # Average variance of a difference of two adjusted means (BLUE)
  m4 <- asreml(yield ~ 1 + gen + rep, data=dat, random = ~ rep:block)
  p4 <- predict(m4, data=dat, classify="gen", sed=TRUE)
  vdiff <- p4$sed^2
  vblue <- mean(vdiff[lower.tri(vdiff)]) # .07010875
  # Again, could use predict(m4, data=dat, classify="gen")$avsed ^ 2
  
  # H^2 Ad-hoc measure of heritability
  sg2 / (sg2 + vblue/2) # .803
  
  # H^2c Similar measure proposed by Cullis.
  1-(vblup / 2 / sg2) # .809


  # ----------

  # Illustrate how to do the same calculations with lme4
  # https://stackoverflow.com/questions/38697477
  
  libs(lme4)
  
  cov2sed <- function(x){
    # Convert var-cov matrix to SED matrix
    # sed[i,j] = sqrt( x[i,i] + x[j,j]- 2*x[i,j] )
    n <- nrow(x)
    vars <- diag(x)
    sed <- sqrt( matrix(vars, n, n, byrow=TRUE) +
                   matrix(vars, n, n, byrow=FALSE) - 2*x )
    diag(sed) <- 0
    return(sed)
  }
  
  # Same as asreml model m4. Note 'gen' must be first term
  m5blue <- lmer(yield ~ 0 + gen + rep + (1|rep:block), dat)
  
  libs(emmeans)
  ls5blue <- emmeans(m5blue, "gen")
  con <- ls5blue@linfct[,1:24] # contrast matrix for genotypes
  # The 'con' matrix is identity diagonal, so we don't need to multiply,
  # but do so for a generic approach
  # sed5blue <- cov2sed(con 
  tmp <- tcrossprod( crossprod(t(con), vcov(m5blue)[1:24,1:24]), con)
  sed5blue <- cov2sed(tmp)

  
  # vblue Average variance of difference between genotypes
  vblue <- mean(sed5blue[upper.tri(sed5blue)]^2)
  vblue # .07010875 matches 'vblue' from asreml
  
  # Now blups
  m5blup <- lmer(yield ~ 0 + (1|gen) + rep + (1|rep:block), dat)
  # Need lme4::ranef in case ordinal is loaded
  re5 <- lme4::ranef(m5blup,condVar=TRUE)
  vv1 <- attr(re5$gen,"postVar")  
  vblup <- 2*mean(vv1) # .0577 not exactly same as 'vblup' above
  vblup
  
  # H^2 Ad-hoc measure of heritability
  sg2 <- c(lme4::VarCorr(m5blup)[["gen"]])  # 0.142902
  sg2 / (sg2 + vblue/2) # .803 matches asreml

  # H^2c Similar measure proposed by Cullis.
  1-(vblup / 2 / sg2) # .809 from asreml, .800 from lme4


## End(Not run)

agridat

Agricultural Datasets

v1.18
CC BY-SA 4.0
Authors
Kevin Wright [aut, cre] (<https://orcid.org/0000-0002-0617-8673>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.